R/summaryFunctions.R

Defines functions summary.MIGSAres summary.IGSAinput summary.GSEAparams summary.SEAparams

Documented in summary.GSEAparams summary.IGSAinput summary.MIGSAres summary.SEAparams

#' Summary functions for some MIGSA classes
#'
#' R base summary overwritten functions to manipulate MIGSA objects.
#'
#' @param object SEAparams, GSEAparams, IGSAinput or MIGSAres object.
#' @param ... not in use.
#'
#' @return A summary of the object.
#'
#' @docType methods
#' @name summary
#' @rdname summaryFunctions
#'
#' @examples
#' ## Lets get the summary of the default SEAparams object
#' seaParams <- SEAparams()
#' summary(seaParams)
#' ## Lets get the summary of the default GSEAparams object
#' gseaParams <- GSEAparams()
#' summary(gseaParams)
#' ## Lets create a basic valid IGSAinput object to get its summary.
#' ## First create a expression matrix.
#' maData <- matrix(rnorm(10000), ncol = 4)
#' rownames(maData) <- 1:nrow(maData)
#' # It must have rownames (gene names).
#' maExprData <- new("MAList", list(M = maData))
#' ## Now lets create the FitOptions object.
#' myFOpts <- FitOptions(c("Cond1", "Cond1", "Cond2", "Cond2"))
#' ## And now we can create our IGSAinput ready for MIGSA.
#' igsaInput <- IGSAinput(
#'   name = "myIgsaInput", expr_data = maExprData,
#'   fit_options = myFOpts
#' )
#' summary(igsaInput)
#' ## Now lets get the summary of out migsaRes data object.
#' data(migsaRes)
#' ### As enrichment cutoff is not set then we will get for each experiment the
#' ### number of enriched gene sets at different cutoff values.
#' summary(migsaRes)
#' ### Lets set the enrichment cutoff at 0.01
#' migsaResWCoff <- setEnrCutoff(migsaRes, 0.01)
#' ### Now as summary we will get the number of enriched gene sets per
#' ### experiment and their intersections.
#' summary(migsaResWCoff)
#' @include SEAparams-class.R
#' @method summary SEAparams
#' @aliases summary,SEAparams-method
#' @export summary.SEAparams
#' @rawNamespace S3method(summary, SEAparams)
#'
summary.SEAparams <- function(object, ...) {
  stopifnot(validObject(object))

  br <- object@br
  if (length(br) > 1) {
    br <- "UserDefined"
  }

  res <- c(
    object@treat_lfc,
    object@de_cutoff,
    object@adjust_method,
    length(object@de_genes),
    br
  )
  names(res) <- c(
    "treat_lfc", "de_cutoff", "adjust_method", "#de_genes",
    "br"
  )

  return(res)
}

#' @rdname summaryFunctions
#' @include GSEAparams-class.R
#' @method summary GSEAparams
#' @aliases summary,GSEAparams-method
#' @export summary.GSEAparams
#' @rawNamespace S3method(summary, GSEAparams)
#'
summary.GSEAparams <- function(object, ...) {
  stopifnot(validObject(object))

  # not showing the other params, as they are from mGSZ, I dont know if
  # anyone uses them
  res <- object@perm_number
  names(res) <- "perm_number"

  return(res)
}

#' @rdname summaryFunctions
#' @include IGSAinput-class.R
#' @method summary IGSAinput
#' @aliases summary,IGSAinput-method
#' @export summary.IGSAinput
#' @rawNamespace S3method(summary, IGSAinput)
#'
summary.IGSAinput <- function(object, ...) {
  validObject(object)

  deGenes <- getDEGenes(object)
  # number of samples of each contrast
  ctrst <- table(col_data(deGenes@fit_options))
  sea_params <- summary(deGenes@sea_params)
  gsea_params <- summary(deGenes@gsea_params)

  res <- c(
    deGenes@name,
    ncol(deGenes@expr_data),
    paste(names(ctrst), collapse = "VS"),
    ctrst[[1]],
    ctrst[[2]],
    length(deGenes@gene_sets_list),
    nrow(deGenes@expr_data),
    sea_params,
    gsea_params,
    round(100 * (as.numeric(sea_params[[4]]) /
      nrow(deGenes@expr_data)), 2)
  )
  names(res) <- c(
    "exp_name",
    "#samples",
    "contrast",
    "#C1",
    "#C2",
    "#gene_sets",
    "#genes",
    names(sea_params),
    names(gsea_params),
    "%de_genes"
  )
  return(res)
}

#' @rdname summaryFunctions
#' @include MIGSAres-class.R
#' @importFrom futile.logger flog.info
#' @method summary MIGSAres
#' @aliases summary,MIGSAres-method
#' @export summary.MIGSAres
#' @rawNamespace S3method(summary, MIGSAres)
#'
summary.MIGSAres <- function(object, ...) {
  stopifnot(validObject(object))

  pvals <- object@migsa_res_summary[, -(1:3), drop = FALSE]

  if (is.na(object@enr_cutoff)) {
    # if there is no cutoff then give results with these three cutoffs
    res <- rbind(
      enr_at_0_01 = colSums(pvals < 0.01, na.rm = !FALSE),
      enr_at_0_05 = colSums(pvals < 0.05, na.rm = !FALSE),
      enr_at_0_1 = colSums(pvals < 0.1, na.rm = !FALSE)
    )
  } else {
    # if we have a cutoff set then give some statistics
    consGsets <- table(rowSums(pvals < object@enr_cutoff,
      na.rm = !FALSE
    ))
    invisible(lapply(names(consGsets), function(actName) {
      flog.info(paste(
        "Gene sets enriched in", actName,
        "experiments:", consGsets[actName]
      ))
    }))

    numExps <- ncol(pvals)
    # lets get the gene sets enriched between each pair of experiments
    enrInters <- do.call(
      rbind,
      lapply(1:ncol(pvals), function(actExp1) {
        lapply(1:ncol(pvals), function(actExp2) {
          sum(
            pvals[, actExp1] < object@enr_cutoff &
              pvals[, actExp2] < object@enr_cutoff,
            na.rm = !FALSE
          )
        })
      })
    )
    colnames(enrInters) <- colnames(pvals)
    rownames(enrInters) <- colnames(pvals)
    res <- list(
      consensusGeneSets = consGsets,
      enrichmentIntersections = enrInters
    )
  }

  return(res)
}
jcrodriguez1989/MIGSA documentation built on Nov. 1, 2020, 8:04 a.m.