no_source()
tinyTools::setwd_project()
setwd("other_files/manuscript/")
exercise_only =
readxl::read_xlsx("Supplementary Data1.xlsx", sheet = 2)
# peak_68 = readr::read_csv("exercise_study/iPOP/peaks_68_for_check.csv")
peak_68 = exercise_only
# exercise_only =
# exercise_only %>%
# dplyr::filter(MSMS != "NO" & Compound %in% peak_68$name)
###HILIC
###positive mode
sxtTools::setwd_project()
setwd("other_files/manuscript/exercise_study/iPOP/pHILIC/")
peak_table =
peak_68 %>%
dplyr::filter(Mode1 == "pHILIC") %>%
dplyr::select(Compound, m.z, RT.min) %>%
dplyr::rename(name = Compound, mz = m.z, rt = RT.min) %>%
dplyr::mutate(rt = rt*60) %>%
as.data.frame()
write.csv(peak_table, "peak_table.csv", row.names = FALSE)
library(tidyverse)
library(data.table)
library(metID)
###identifiy peaks with MS2
test1 =
identify_metabolites(
ms1.data = "peak_table.csv",
ms2.data = dir(".", "mgf"),
polarity = "positive",
ce = "all",
column = "hilic",
candidate.num = 3,
threads = 8,
database = "msDatabase_hilic0.0.2",
path = "."
)
test2 =
identify_metabolites(
ms1.data = "peak_table.csv",
ms2.data = NULL,
polarity = "positive",
ce = "all",
column = "hilic",
candidate.num = 3,
threads = 8,
database = "msDatabase_hilic0.0.2",
path = "."
)
test1
test2
identification_table1 =
get_identification_table(test1,
candidate.num = 1,
type = "new")
identification_table1[,c("name", "Compound.name", "mz.error", "RT.error", "SS")] %>%
dplyr::left_join(exercise_only[,c("Compound", "Metabolite_val")],
by = c("name" = "Compound"))
identification_table2 =
get_identification_table(test2,
candidate.num = 1,
type = "new")
identification_table2[,c("name", "Compound.name", "mz.error", "RT.error", "SS")] %>%
dplyr::left_join(exercise_only[,c("Compound", "Metabolite_val")],
by = c("name" = "Compound"))
identification_table_hilic_pos =
get_identification_table(test2, candidate.num = 1, type = "new")
###HILIC
###negative mode
sxtTools::setwd_project()
setwd("other_files/manuscript/exercise_study/iPOP/nHILIC/")
library(tidyverse)
library(data.table)
library(metID)
peak_table =
peak_68 %>%
dplyr::filter(Mode1 == "nHILIC") %>%
dplyr::select(Compound, m.z, RT.min) %>%
dplyr::rename(name = Compound, mz = m.z, rt = RT.min) %>%
dplyr::mutate(rt = rt*60) %>%
as.data.frame()
write.csv(peak_table, "peak_table.csv", row.names = FALSE)
peak_table
test1 =
identify_metabolites(
ms1.data = "peak_table.csv",
ms2.data = dir(".", "mgf"),
polarity = "negative",
ce = "all",
column = "hilic",
candidate.num = 3,
threads = 8,
database = "msDatabase_hilic0.0.2",
path = "."
)
test2 =
identify_metabolites(
ms1.data = "peak_table.csv",
ms2.data = NULL,
polarity = "negative",
ce = "all",
column = "hilic",
candidate.num = 3,
threads = 8,
database = "msDatabase_hilic0.0.2",
path = "."
)
test1
test2
identification_table1 =
get_identification_table(test1,
candidate.num = 1,
type = "new")
identification_table1[,c("name", "Compound.name", "mz.error", "RT.error", "SS")] %>%
dplyr::left_join(exercise_only[,c("Compound", "Metabolite_val")],
by = c("name" = "Compound")) %>%
as.data.frame()
identification_table2 =
get_identification_table(test2,
candidate.num = 1,
type = "new")
identification_table2[,c("name", "Compound.name", "mz.error", "RT.error", "SS")] %>%
dplyr::left_join(exercise_only[,c("Compound", "Metabolite_val")],
by = c("name" = "Compound"))
identification_table_hilic_neg =
get_identification_table(test2, candidate.num = 1, type = "new")
###RPLC
###positive mode
sxtTools::setwd_project()
setwd("other_files/manuscript/exercise_study/iPOP/pRPLC/")
library(tidyverse)
library(data.table)
library(metID)
peak_table =
peak_68 %>%
dplyr::filter(Mode1 == "pRPLC") %>%
dplyr::select(Compound, m.z, RT.min) %>%
dplyr::rename(name = Compound, mz = m.z, rt = RT.min) %>%
dplyr::mutate(rt = rt*60) %>%
as.data.frame()
write.csv(peak_table, "peak_table.csv", row.names = FALSE)
peak_table
test1 =
identify_metabolites(
ms1.data = "peak_table.csv",
ms2.data = dir(".", "mgf"),
polarity = "positive",
ce = "all",
column = "rp",
candidate.num = 3,
threads = 8,
database = "msDatabase_rplc0.0.2",
path = "."
)
test2 =
identify_metabolites(
ms1.data = "peak_table.csv",
ms2.data = NULL,
polarity = "positive",
ce = "all",
column = "rp",
candidate.num = 3,
threads = 8,
database = "msDatabase_rplc0.0.2",
path = "."
)
test1
test2
identification_table1 =
get_identification_table(test1,
candidate.num = 1,
type = "new")
identification_table1[,c("name", "Compound.name", "mz.error", "RT.error", "SS")] %>%
dplyr::left_join(exercise_only[,c("Compound", "Metabolite_val")],
by = c("name" = "Compound")) %>%
as.data.frame()
identification_table2 =
get_identification_table(test2,
candidate.num = 1,
type = "new")
identification_table2[,c("name", "Compound.name", "mz.error", "RT.error", "SS")] %>%
dplyr::left_join(exercise_only[,c("Compound", "Metabolite_val")],
by = c("name" = "Compound")) %>%
as.data.frame()
test = list(msDatabase_rplc0.0.2 = test1,
msDatabase_rplc0.0.2_2 = test2)
identification_table_rplc_pos =
get_identification_table_all(test,
candidate.num = 1)
###RPLC
###negative mode
sxtTools::setwd_project()
setwd("other_files/manuscript/exercise_study/iPOP/nRPLC/")
library(tidyverse)
library(data.table)
library(metID)
peak_table =
peak_68 %>%
dplyr::filter(Mode1 == "nRPLC") %>%
dplyr::select(Compound, m.z, RT.min) %>%
dplyr::rename(name = Compound, mz = m.z, rt = RT.min) %>%
dplyr::mutate(rt = rt*60) %>%
as.data.frame()
write.csv(peak_table, "peak_table.csv", row.names = FALSE)
peak_table
test1 =
identify_metabolites(
ms1.data = "peak_table.csv",
ms2.data = dir(".", "mgf"),
polarity = "negative",
ce = "all",
column = "rp",
candidate.num = 3,
threads = 8,
database = "msDatabase_rplc0.0.2",
path = "."
)
test2 =
identify_metabolites(
ms1.data = "peak_table.csv",
ms2.data = NULL,
polarity = "negative",
ce = "all",
column = "rp",
candidate.num = 3,
threads = 8,
database = "msDatabase_rplc0.0.2",
path = "."
)
test1
test2
identification_table1 =
get_identification_table(test1,
candidate.num = 1,
type = "new")
identification_table1[,c("name", "Compound.name", "mz.error", "RT.error", "SS")] %>%
dplyr::left_join(exercise_only[,c("Compound", "Metabolite_val")],
by = c("name" = "Compound")) %>%
as.data.frame()
identification_table2 =
get_identification_table(test2,
candidate.num = 1,
type = "new")
identification_table2[,c("name", "Compound.name", "mz.error", "RT.error", "SS")] %>%
dplyr::left_join(exercise_only[,c("Compound", "Metabolite_val")],
by = c("name" = "Compound")) %>%
as.data.frame()
test = list(msDatabase_rplc0.0.2 = test1,
msDatabase_rplc0.0.2_2 = test2)
identification_table_rplc_neg =
get_identification_table_all(test,
candidate.num = 1)
dim(identification_table_hilic_pos)
dim(identification_table_hilic_neg)
dim(identification_table_rplc_pos)
dim(identification_table_rplc_neg)
colnames(identification_table_hilic_pos)
colnames(identification_table_hilic_neg)
colnames(identification_table_rplc_pos)
colnames(identification_table_rplc_neg)
identification_table_hilic_pos$Level = 2
identification_table_hilic_neg$Level = 2
identification_table_rplc_pos$Database = "msDatabase_rplc0.0.2"
identification_table_rplc_neg$Database = "msDatabase_rplc0.0.2"
identification_table =
rbind(identification_table_hilic_pos,
identification_table_hilic_neg,
identification_table_rplc_pos,
identification_table_rplc_neg)
dim(identification_table)
dim(peak_68)
identification_table =
identification_table[match(peak_68$Compound, identification_table$name), ]
peak_68$Annotation = identification_table$Compound.name
peak_68$HMDB = identification_table$HMDB.ID
peak_68$KEGG = identification_table$KEGG.ID
peak_68$Total.score = identification_table$Total.score
peak_68$Database = identification_table$Database
peak_68$Level = identification_table$Level
peak_68$Mode2 = peak_68$Mode1
peak_68[c(22,33),]
peak_68$`Same or not` = TRUE
write.csv(peak_68, "peak_68_annotation.csv", row.names = FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.