testthat::context('loglinear')
testthat::test_that('All options in the linreg work (sunny)', {
data <- data.frame(
"factor 1" = c("Group 1", "Group 1", "Group 2", "Group 2"),
"factor 2" = c("Treatment 1", "Treatment 2", "Treatment 1", "Treatment 2"),
"count s" = c(44, 86, 56, 78),
check.names = FALSE,
stringsAsFactors = TRUE
)
factors <- c("factor 1", "factor 2")
counts <- "count s"
blocks <- list(
list("factor 1", "factor 2", c("factor 1", "factor 2"))
)
refLevels <- list(
list(var="factor 1", ref="Group 1"),
list(var="factor 2", ref="Treatment 1")
)
r <- jmv::logLinear(
data,
factors = !!factors,
counts = !!counts,
blocks = blocks,
refLevels = refLevels,
modelTest = TRUE,
bic = TRUE,
pseudoR2 = c("r2mf", "r2cs", "r2n"),
omni = TRUE,
ci = TRUE,
RR = TRUE,
ciRR = TRUE,
emMeans = ~ `factor 1` + `factor 2` + `factor 1`:`factor 2`,
emmPlots = FALSE,
emmTables = TRUE
)
# Test model fit table
modelFitTable <- r$modelFit$asDF
testthat::expect_equal(1, modelFitTable[['model']])
testthat::expect_equal(0, modelFitTable[['dev']], tolerance = 1e-3)
testthat::expect_equal(31.983, modelFitTable[['aic']], tolerance = 1e-3)
testthat::expect_equal(29.528, modelFitTable[['bic']], tolerance = 1e-3)
testthat::expect_equal(1, modelFitTable[['r2mf']], tolerance = 1e-3)
testthat::expect_equal(0.987, modelFitTable[['r2cs']], tolerance = 1e-3)
testthat::expect_equal(1, modelFitTable[['r2n']], tolerance = 1e-3)
testthat::expect_equal(17.505, modelFitTable[['chi']], tolerance = 1e-3)
testthat::expect_equal(3, modelFitTable[['df']])
testthat::expect_equal(0.001, modelFitTable[['p']], tolerance = 1e-3)
# Test omnibus likelihood ratio tests table
lrtTable <- r$models[[1]]$lrt$asDF
testthat::expect_equal(
c('factor 1', 'factor 2', 'factor 1:factor 2'), lrtTable[['term']]
)
testthat::expect_equal(c(1.443, 13.816, 1.773), lrtTable[['chi']], tolerance = 1e-3)
testthat::expect_equal(c(1, 1, 1), lrtTable[['df']])
testthat::expect_equal(c(0.23, 0, 0.183), lrtTable[['p']], tolerance = 1e-3)
# Test model coefficients table
coefTable <- r$models[[1]]$coef$asDF
testthat::expect_equal(
c(
'Intercept',
'factor 1:',
'Group 2 – Group 1',
'factor 2:',
'Treatment 2 – Treatment 1',
'factor 1:factor 2:',
'(Group 2 – Group 1):(Treatment 2 – Treatment 1)'
),
coefTable[['term']]
)
testthat::expect_equal(
c(3.784, NA, 0.241, NA, 0.67, NA, -0.339), coefTable[['est']], tolerance = 1e-3
)
testthat::expect_equal(
c(3.489, NA, -0.154, NA, 0.307, NA, -0.839), coefTable[['lower']], tolerance = 1e-3
)
testthat::expect_equal(
c(4.08, NA, 0.636, NA, 1.033, NA, 0.161), coefTable[['upper']], tolerance = 1e-3
)
testthat::expect_equal(
c(0.151, NA, 0.201, NA, 0.185, NA, 0.255), coefTable[['se']], tolerance = 1e-3
)
testthat::expect_equal(
c(25.102, NA, 1.197, NA, 3.616, NA, -1.329), coefTable[['z']], tolerance = 1e-3
)
testthat::expect_equal(c(0, NA, 0.231, NA, 0, NA, 0.184), coefTable[['p']], tolerance = 1e-3)
testthat::expect_equal(
c(44, NA, 1.273, NA, 1.955, NA, 0.713), coefTable[['rate']], tolerance = 1e-3
)
testthat::expect_equal(
c(32.744, NA, 0.858, NA, 1.359, NA, 0.432), coefTable[['rateLower']], tolerance = 1e-3
)
testthat::expect_equal(
c(59.126, NA, 1.889, NA, 2.811, NA, 1.175), coefTable[['rateUpper']], tolerance = 1e-3
)
# Test estimated marginal means
emmFactor1Table <- r$models[[1]]$emm[[1]]$emmTable$asDF
testthat::expect_equal(c('Group 1', 'Group 2'), emmFactor1Table[['factor 1']])
testthat::expect_equal(c(61.514, 66.091), emmFactor1Table[['counts']], tolerance = 1e-3)
testthat::expect_equal(c(5.701, 5.788), emmFactor1Table[['se']], tolerance = 1e-3)
testthat::expect_equal(c(51.297, 55.667), emmFactor1Table[['lower']], tolerance = 1e-3)
testthat::expect_equal(c(73.767, 78.467), emmFactor1Table[['upper']], tolerance = 1e-3)
emmFactor2Table <- r$models[[1]]$emm[[2]]$emmTable$asDF
testthat::expect_equal(c('Treatment 1', 'Treatment 2'), emmFactor2Table[['factor 2']])
testthat::expect_equal(c(49.639, 81.902), emmFactor2Table[['counts']], tolerance = 1e-3)
testthat::expect_equal(c(5, 6.403), emmFactor2Table[['se']], tolerance = 1e-3)
testthat::expect_equal(c(40.746, 70.267), emmFactor2Table[['lower']], tolerance = 1e-3)
testthat::expect_equal(c(60.473, 95.465), emmFactor2Table[['upper']], tolerance = 1e-3)
emmInteractionTable <- r$models[[1]]$emm[[3]]$emmTable$asDF
testthat::expect_equal(
c('Treatment 1', 'Treatment 1', 'Treatment 2', 'Treatment 2'),
emmInteractionTable[['factor 2']]
)
testthat::expect_equal(
c('Group 1', 'Group 2', 'Group 1', 'Group 2'), emmInteractionTable[['factor 1']]
)
testthat::expect_equal(c(44, 56, 86, 78), emmInteractionTable[['counts']], tolerance = 1e-3)
testthat::expect_equal(
c(6.633, 7.483, 9.274, 8.832), emmInteractionTable[['se']], tolerance = 1e-3
)
testthat::expect_equal(
c(32.744, 43.096, 69.616, 62.476), emmInteractionTable[['lower']], tolerance = 1e-3
)
testthat::expect_equal(
c(59.126, 72.767, 106.239, 97.381), emmInteractionTable[['upper']], tolerance = 1e-3
)
})
testthat::test_that('loglinear works old scenario', {
data('mtcars')
tab <- table('gear'=mtcars$gear, 'cyl'=mtcars$cyl)
dat <- as.data.frame(tab)
logLin <- jmv::logLinear(
data = dat, factors = c("gear", "cyl"), counts = "Freq",
blocks = list(list("gear", "cyl", c("gear", "cyl"))),
refLevels = list(
list(var="gear", ref="3"),
list(var="cyl", ref="4")
)
)
modelFit <- logLin$modelFit$asDF
coef <- logLin$models[[1]]$coef$asDF
# Test model fit table
testthat::expect_equal(1, modelFit$r2mf[1], tolerance = 1e-3)
testthat::expect_equal(41.382, modelFit$aic[1], tolerance = 1e-3)
# Test coefficients table
testthat::expect_equal(2.079, coef$est[3], tolerance = 1e-3)
testthat::expect_equal(1.225, coef$se[6], tolerance = 1e-3)
testthat::expect_equal(0.571, coef$p[4], tolerance = 1e-3)
})
testthat::test_that('Provide error message when factor contains fewer than two levels', {
df <- data.frame(x = rep(1, 7))
testthat::expect_error(
jmv::logLinear(
data=df,
factors="x",
blocks=list(list("x")),
refLevels = list(list(var="x", ref="1"))
),
"Factors must have at least two levels"
)
})
testthat::test_that('Provide error message when data contains only missing values', {
df <- data.frame(x = factor(rep(NA, 7)))
testthat::expect_error(
jmv::logLinear(
data=df,
factors="x",
blocks=list(list("x")),
refLevels = list(list(var="x", ref=NULL))
),
"The dataset contains 0 rows"
)
})
params <- list(
list(refLevels = list(list(var="factor_1", ref="x"), list(var="factor_2", ref="X")), info = "Non-existing reference levels"),
list(refLevels = NULL, info = "No reference levels"),
list(refLevels = list(list(var="wrong_factor", ref="A")), info = "Wrong variable name")
)
testthat::test_that('Reference level defaults to first level for faulty reference levels', {
for (param in params) {
# GIVEN a dataset with a factor with two levels
df <- data.frame(
factor_1 = rep(letters[1:3], length.out=10),
factor_2 = rep(LETTERS[1:2], length.out=10),
stringsAsFactors = TRUE
)
# WHEN a log-linear regression is fitted with reference level set to a non-existing level
r <- jmv::logLinear(
df,
factors = c("factor_1", "factor_2"),
blocks = list(list("factor_1", "factor_2", c("factor_1", "factor_2"))),
refLevels = param$refLevels
)
# THEN the reference level should default to the first level for factor 1
testthat::expect_match(r$models[[1]]$coef$asDF$term[3], "b – a", info=param$info)
# THEN the reference level should default to the first level for factor 2
testthat::expect_match(r$models[[1]]$coef$asDF$term[6], "B – A", info=param$info)
# AND a warning is added informing the user that the user defined reference level does not
# exist and therefore was changed to the first level
testthat::expect_match(r[[1]]$content, "reference level was not found", info=param$info)
}
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.