R/corrmatrix.b.R

#' @importFrom jmvcore .
corrMatrixClass <- R6::R6Class(
  "corrMatrixClass",
  inherit=corrMatrixBase,
  private=list(
    .init=function() {
        matrix <- self$results$matrix
        vars <- self$options$vars
        nVars <- length(vars)
        ciw <- self$options$ciWidth

        mtord <- FALSE
        for (i in seq_along(vars)) {
            var <- vars[[i]]

            if ( ! canBeNumeric(self$data[[var]]) && self$options$pearson)
                mtord <- TRUE

            matrix$addColumn(name=paste0(var, '[r]'), title=var,
                type='number', format='zto', visible='(pearson)')
            matrix$addColumn(name=paste0(var, '[rdf]'), title=var,
                type='integer', visible='(pearson && sig)')
            matrix$addColumn(name=paste0(var, '[rp]'), title=var,
                type='number', format='zto,pvalue', visible='(pearson && sig)')
            matrix$addColumn(name=paste0(var, '[rciu]'), title=var,
                type='number', format='zto', visible='(pearson && ci)')
            matrix$addColumn(name=paste0(var, '[rcil]'), title=var,
                type='number', format='zto', visible='(pearson && ci)')
            matrix$addColumn(name=paste0(var, '[rho]'), title=var,
                type='number', format='zto', visible='(spearman)')
            matrix$addColumn(name=paste0(var, '[rhodf]'), title=var,
                type='integer', visible='(spearman && sig)')
            matrix$addColumn(name=paste0(var, '[rhop]'), title=var,
                type='number', format='zto,pvalue', visible='(spearman && sig)')
            matrix$addColumn(name=paste0(var, '[tau]'), title=var,
                type='number', format='zto', visible='(kendall)')
            matrix$addColumn(name=paste0(var, '[taup]'), title=var,
                type='number', format='zto,pvalue', visible='(kendall && sig)')
            matrix$addColumn(name=paste0(var, '[n]'), title=var,
                type='integer', visible='(n)')
        }

        for (i in seq_along(vars)) {

            var <- vars[[i]]
            values <- list()

            for (j in seq(i, nVars)) {
                v <- vars[[j]]
                values[[paste0(v, '[r]')]] <- ''
                values[[paste0(v, '[rdf]')]] <- ''
                values[[paste0(v, '[rp]')]] <- ''
                values[[paste0(v, '[rciu]')]] <- ''
                values[[paste0(v, '[rcil]')]] <- ''
                values[[paste0(v, '[rho]')]] <- ''
                values[[paste0(v, '[rhodf]')]] <- ''
                values[[paste0(v, '[rhop]')]] <- ''
                values[[paste0(v, '[tau]')]] <- ''
                values[[paste0(v, '[taup]')]] <- ''
                values[[paste0(v, '[n]')]] <- ''
            }

            values[[paste0(var, '[r]')]] <- '\u2014'
            values[[paste0(var, '[rdf]')]] <- '\u2014'
            values[[paste0(var, '[rp]')]] <- '\u2014'
            values[[paste0(var, '[rciu]')]] <- '\u2014'
            values[[paste0(var, '[rcil]')]] <- '\u2014'
            values[[paste0(var, '[rho]')]] <- '\u2014'
            values[[paste0(var, '[rhodf]')]] <- '\u2014'
            values[[paste0(var, '[rhop]')]] <- '\u2014'
            values[[paste0(var, '[tau]')]] <- '\u2014'
            values[[paste0(var, '[taup]')]] <- '\u2014'
            values[[paste0(var, '[n]')]] <- '\u2014'

            values[['.stat[rciu]']] <- jmvcore::format(.('{ciWidth}% CI Upper'), ciWidth=ciw)
            values[['.stat[rcil]']] <- jmvcore::format(.('{ciWidth}% CI Lower'), ciWidth=ciw)

            matrix$setRow(rowKey=var, values)
        }

        hyp <- self$options$get('hypothesis')
        flag <- self$options$get('flag')

        if (hyp == 'pos') {
            matrix$setNote('hyp', .('H\u2090 is positive correlation'))
            hyp <- 'greater'
            if (flag)
                matrix$setNote('flag', .('* p < .05, ** p < .01, *** p < .001, one-tailed'))
        }
        else if (hyp == 'neg') {
            matrix$setNote('hyp', .('H\u2090 is negative correlation'))
            hyp <- 'less'
            if (flag)
                matrix$setNote('flag', .('* p < .05, ** p < .01, *** p < .001, one-tailed'))
        }
        else {
            matrix$setNote('hyp', NULL)
            hyp <- 'two.sided'
            if (flag)
                matrix$setNote('flag', '* p < .05, ** p < .01, *** p < .001')
        }

        if ( ! flag)
            matrix$setNote('flag', NULL)

    },
    .run=function() {

        matrix <- self$results$matrix
        vars <- self$options$vars
        nVars <- length(vars)

        hyp <- self$options$hypothesis
        flag <- self$options$flag

        if (hyp == 'pos')
            hyp <- 'greater'
        else if (hyp == 'neg')
            hyp <- 'less'
        else
            hyp <- 'two.sided'

        if (nVars > 1) {
            for (i in 2:nVars) {
                rowVarName <- vars[[i]]
                rowVar <- jmvcore::toNumeric(self$data[[rowVarName]])
                for (j in seq_len(i-1)) {
                    values <- list()

                    colVarName <- vars[[j]]
                    colVar <- jmvcore::toNumeric(self$data[[colVarName]])

                    if (is.factor(rowVar) || is.factor(colVar))
                        mtord <- TRUE
                    else
                        mtord <- FALSE

                    result <- private$.test(rowVar, colVar, hyp, mtord)

                    values[[paste0(colVarName, '[r]')]] <- result$r
                    values[[paste0(colVarName, '[rp]')]] <- result$rp
                    values[[paste0(colVarName, '[rciu]')]] <- result$rciu
                    values[[paste0(colVarName, '[rcil]')]] <- result$rcil
                    values[[paste0(colVarName, '[rho]')]] <- result$rho
                    values[[paste0(colVarName, '[rhop]')]] <- result$rhop
                    values[[paste0(colVarName, '[tau]')]] <- result$tau
                    values[[paste0(colVarName, '[taup]')]] <- result$taup

                    n <- sum( ! (is.na(colVar) | is.na(rowVar)))
                    df <- n - 2
                    values[[paste0(colVarName, '[n]')]] <- n
                    values[[paste0(colVarName, '[rdf]')]] <- df
                    values[[paste0(colVarName, '[rhodf]')]] <- df

                    matrix$setRow(rowNo=i, values)

                    if (mtord)
                        matrix$addFootnote(rowNo=i, paste0(colVarName, '[r]'), .('Pearson correlation cannot be calculated for non-numeric values'))

                    if (flag) {
                        if ( ! self$options$pearson || mtord)
                            {}  # do nothing
                        else if (result$rp < .001)
                            matrix$addSymbol(rowNo=i, paste0(colVarName, '[r]'), '***')
                        else if (result$rp < .01)
                            matrix$addSymbol(rowNo=i, paste0(colVarName, '[r]'), '**')
                        else if (result$rp < .05)
                            matrix$addSymbol(rowNo=i, paste0(colVarName, '[r]'), '*')

                        if ( ! self$options$spearman)
                            {}  # do nothing
                        else if (result$rhop < .001)
                            matrix$addSymbol(rowNo=i, paste0(colVarName, '[rho]'), '***')
                        else if (result$rhop < .01)
                            matrix$addSymbol(rowNo=i, paste0(colVarName, '[rho]'), '**')
                        else if (result$rhop < .05)
                            matrix$addSymbol(rowNo=i, paste0(colVarName, '[rho]'), '*')

                        if ( ! self$options$kendall)
                            {}  # do nothing
                        else if (result$taup < .001)
                            matrix$addSymbol(rowNo=i, paste0(colVarName, '[tau]'), '***')
                        else if (result$taup < .01)
                            matrix$addSymbol(rowNo=i, paste0(colVarName, '[tau]'), '**')
                        else if (result$taup < .05)
                            matrix$addSymbol(rowNo=i, paste0(colVarName, '[tau]'), '*')
                    }
                }
            }
        }
    },
    .test=function(var1, var2, hyp, mtord) {
        results <- list()

        suppressWarnings({

            if (mtord) {
                results$r <- NaN
                results$rp <- NaN
                results$rciu <- NaN
                results$rcil <- NaN
            }
            else if(self$options$pearson) {
                ciw <- self$options$ciWidth / 100
                res <- try(cor.test(var1, var2, alternative=hyp, method='pearson', conf.level=ciw))

                if ( ! base::inherits(res, 'try-error')) {
                    results$r  <- res$estimate
                    results$rp <- res$p.value
                    results$rciu <- res$conf.int[2]
                    results$rcil <- res$conf.int[1]
                }
                else {
                    results$r <- NaN
                    results$rp <- NaN
                    results$rciu <- NaN
                    results$rcil <- NaN
                }
            }

            if (self$options$spearman) {
                res <- try(cor.test(as.numeric(var1), as.numeric(var2), alternative=hyp, method='spearman'))

                if ( ! base::inherits(res, 'try-error')) {
                    results$rho <- res$estimate
                    results$rhop <- res$p.value
                }
                else {
                    results$rho <- NaN
                    results$rhop <- NaN
                }
            }

            if (self$options$kendall){
                res <- try(cor.test(as.numeric(var1), as.numeric(var2), alternative=hyp, method='kendall'))

                if ( ! base::inherits(res, 'try-error')) {
                    results$tau <- res$estimate
                    results$taup <- res$p.value
                }
                else {
                    results$tau <- NaN
                    results$taup <- NaN
                }
            }
        }) # suppressWarnings

        return(results)
    },
    .plot=function(image, ggtheme, ...) {

        columns <- unlist(self$options$get('vars'))

        if (length(columns) == 0)
            return(FALSE)

        smooth <- GGally::wrap(GGally::ggally_smooth, size = 1, alpha=.3)

        lower <- list(
            continuous=smooth,
            combo="facethist",
            discrete="facetbar",
            na = "na")

        if (self$options$pearson) {
            method <- 'pearson'
        } else if (self$options$spearman) {
            method <- 'spearman'
        } else if (self$options$kendall) {
            method <- 'kendall'
        } else {
            method <- 'pearson'
        }

        cor <- function(...) GGally::ggally_cor(..., method=method)

        if (self$options$get('plotStats'))
            upper <- list(
                continuous=cor,
                combo="box",
                discrete="facetbar",
                na="na")
        else
            upper <- NULL

        if (self$options$get('plotDens'))
            diag <- list(
                continuous="densityDiag",
                discrete="barDiag",
                na="naDiag")
        else
            diag <- NULL

        data <- jmvcore::select(self$data, columns)
        names(data) <- paste0('f', seq_along(columns))

        for (i in seq_along(columns)) {
            data[[i]] <- jmvcore::toNumeric(data[[i]])
            attr(data[[i]], 'jmv-desc') <- NULL
        }

        p <- GGally::ggpairs(
            data,
            columnLabels=columns,
            lower=lower,
            upper=upper,
            diag=diag) + ggtheme[[1]] +
            theme(axis.text = element_text(size = 9))

        return(p)
    })
)
jamovi/jmv documentation built on Jan. 17, 2025, 10:31 p.m.