testthat::context('ttestOneS')
testthat::test_that('All options in the ttestOneS work (sunny)', {
suppressWarnings(RNGversion("3.5.0"))
set.seed(1337)
df <- data.frame(
`dep 1` = rnorm(100, 0, 1),
`dep 2` = rnorm(100, 2, 0.1),
`dep 3` = rnorm(100, 10, 5),
check.names = FALSE
)
r <- jmv::ttestOneS(
df,
vars = c("dep 1", "dep 2", "dep 3"),
bf = TRUE,
wilcoxon = TRUE,
norm = TRUE,
meanDiff = TRUE,
ci = TRUE,
effectSize = TRUE,
ciES = TRUE,
desc = TRUE
)
# Test main t-test table
ttestTable <- r$ttest$asDF
testthat::expect_equal(c('dep 1', 'dep 2', 'dep 3'), ttestTable[['var[stud]']])
testthat::expect_equal(c(2.225, 199.13, 17.46), ttestTable[['stat[stud]']], tolerance = 1e-3)
testthat::expect_equal(c(99, 99, 99), ttestTable[['df[stud]']])
testthat::expect_equal(c(0.028, 0, 0), ttestTable[['p[stud]']], tolerance = 1e-3)
testthat::expect_equal(c(0.237, 2.004, 9.207), ttestTable[['md[stud]']], tolerance = 1e-3)
testthat::expect_equal(c(0.026, 1.984, 8.16), ttestTable[['cil[stud]']], tolerance = 1e-3)
testthat::expect_equal(c(0.448, 2.024, 10.253), ttestTable[['ciu[stud]']], tolerance = 1e-3)
testthat::expect_equal(c(0.223, 19.913, 1.746), ttestTable[['es[stud]']], tolerance = 1e-3)
testthat::expect_equal(c(0.024, 17.082, 1.432), ttestTable[['ciles[stud]']], tolerance = 1e-3)
testthat::expect_equal(c(0.42, 22.643, 2.056), ttestTable[['ciues[stud]']], tolerance = 1e-3)
testthat::expect_equal(
c(1.163, 2.203e+126, 5.448e+28), ttestTable[['stat[bf]']], tolerance = 1e-3
)
testthat::expect_equal(c(0, 0, 0), ttestTable[['err[bf]']], tolerance = 1e-3)
testthat::expect_equal(c(3117, 5050, 5016), ttestTable[['stat[wilc]']], tolerance = 1e-3)
testthat::expect_equal(c(0.042, 0, 0), ttestTable[['p[wilc]']], tolerance = 1e-3)
testthat::expect_equal(c(0.233, 1.998, 9.281), ttestTable[['md[wilc]']], tolerance = 1e-3)
testthat::expect_equal(c(0.006, 1.979, 8.226), ttestTable[['cil[wilc]']], tolerance = 1e-3)
testthat::expect_equal(c(0.459, 2.019, 10.307), ttestTable[['ciu[wilc]']], tolerance = 1e-3)
testthat::expect_equal(c(0.234, 1, 0.987), ttestTable[['es[wilc]']], tolerance = 1e-3)
# Test normality tests table
normTable <- r$normality$asDF
testthat::expect_equal(c('dep 1', 'dep 2', 'dep 3'), normTable[['name']])
testthat::expect_equal(c(0.992, 0.973, 0.982), normTable[['w']], tolerance = 1e-3)
testthat::expect_equal(c(0.849, 0.039, 0.19), normTable[['p']], tolerance = 1e-3)
# Test descriptives table
descTable <- r$descriptives$asDF
testthat::expect_equal(c('dep 1', 'dep 2', 'dep 3'), descTable[['name']])
testthat::expect_equal(c(100, 100, 100), descTable[['num']])
testthat::expect_equal(c(0.237, 2.004, 9.207), descTable[['mean']], tolerance = 1e-3)
testthat::expect_equal(c(0.19, 1.987, 9.819), descTable[['median']], tolerance = 1e-3)
testthat::expect_equal(c(1.065, 0.101, 5.273), descTable[['sd']], tolerance = 1e-3)
testthat::expect_equal(c(0.107, 0.01, 0.527), descTable[['se']], tolerance = 1e-3)
})
testthat::test_that('Matched rank biserial correlation is correct', {
df <- data.frame(
before = c(20, 22, 19, 20, 22, 18, 24, 20, 25),
after = c(38, 37, 33, 29, 14, 12, 20, 22, 25)
)
df$dif <- df$after - df$before
r <- jmv::ttestOneS(df, vars = "dif", wilcoxon=TRUE, students=FALSE, effectSize=TRUE)
# Test rank biserial correlation
ttestTable <- r$ttest$asDF
testthat::expect_equal('dif', ttestTable[['var[wilc]']])
testthat::expect_equal(27, ttestTable[['stat[wilc]']])
testthat::expect_equal(0.234, ttestTable[['p[wilc]']], tolerance = 1e-3)
testthat::expect_equal(0.5, ttestTable[['es[wilc]']])
})
testthat::test_that('Matched rank biserial correlation works with non zero test value', {
df <- data.frame(x = c(1, 5, 3, 4, 4, 2, 3, 2, 1, 4, 5, 4, 3, 1))
r <- jmv::ttestOneS(
df, testValue=3, vars="x", hypothesis="gt", wilcoxon=TRUE, students=FALSE, effectSize=TRUE
)
# Test rank biserial correlation
ttestTable <- r$ttest$asDF
testthat::expect_equal(-0.0303, ttestTable[['es[wilc]']], tolerance = 1e-4)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.