#' Function for associating race adjusted DNA methylation with matched mRNA expression
#'
#' This function allows one to associate DNA methylation with matched mRNA expression
#' in a multivariate context while adjusting for race. This function assumes
#' that the variable 'race' is the final column in the matrix.
#'
#' @importFrom utils data
#' @import stats
#' @export Interact
#' @param x Processed DNA methylation with covariates. Race must be the final term
#' @param y Raw expression count vector
#' @param alpha Elastic net mixing penalty. Defaults to 0.5
#' @param nfolds the number of folds to use for cross-validation
#' @param clin a matrix of clinical covariates
#' @return returns list of five elements for summarizing model construction.
#' \code{Model} is the predicted model for the gene. \code{Predicted.Expression}
#' is the Cross-validated predicted expression. \code{Overall.D2} The prediction
#' accuracy for the interaction model. \code{Class1.D2} is the prediction accuracy
#' for the reference class. \code{Class2.D2} is the prediction accuracy for the
#' non-reference class.
#'
#' @examples
#' data("Testdat", package = 'EpiXprS')
#' x = cbind(matrix(rnorm(500),nrow=50),rbinom(50,1,0.5) ,rbinom(50,1,0.5))
#' colnames(data.whole) <- c(1:10,'sex','race')
#' RNA_idx <- rpois(50,15)
#' Interact(data.whole, RNA_idx, alpha = 0.5, nfolds = 5, clin = clinical)
#'
Interact <- function(x,y,alpha,nfolds,clin){
if (!requireNamespace("glmnet", quietly = TRUE)) {
stop("Package \"glmnet\" needed for this function to work. Please install it.",
call. = FALSE)
}
tryCatch({
int <- clin[,ncol(clin)]
clin1 <- clin[,-c(ncol(clin))]
if(ncol(clin) >1){
mat <- model.matrix(y ~ x*int + clin1 -1)
} else {
mat <- model.matrix(y ~ x*int -1)
}
whole.elastic.fit.cv <- glmnet::cv.glmnet(mat,as.matrix(t(y)) , family ='poisson', nfolds = nfolds,alpha=alpha,penalty.factor = c(rep(1, ncol(mat) - ncol(clin)),0,0), parallel = FALSE )
coef.min = stats::coef(whole.elastic.fit.cv, s = "lambda.min")
active.min = which(as.numeric(coef.min) != 0)
Whole.elastic = coef.min[active.min]
names <- rownames(coef.min)
a <- data.frame(row.names = names[active.min], Weights = Whole.elastic)
dt <- et <- ct <- rep(NA,nfolds)
b <- NULL
idx <- sample(seq(nfolds),nrow(x),replace=TRUE)
for (i in seq(nfolds)){
Whole.elastic.fit <- glmnet::cv.glmnet(as.matrix(mat[!idx %in% i,]),as.matrix(t(y[!idx %in% i])), family='poisson', nfolds = nfolds,alpha = alpha,penalty.factor = c(rep(1, ncol(mat) - ncol(clin)),0,0))
coef.min = stats::coef(whole.elastic.fit.cv, s = "lambda.min")
out <- predict(Whole.elastic.fit, as.matrix(mat[idx %in% i,]), s=Whole.elastic.fit$lambda.min, type = 'response', gamma=alpha)
rownames(out) <- rownames(mat[idx %in% i,])
out <- round(out)
b <- rbind(b,out)
y_i <- as.numeric(y[idx %in% i])
u_i <- out
ct[i] <- D2(y_i,u_i)
y_i <- as.numeric(y[idx %in% i])[mat[idx %in% i,][,(ncol(mat[idx %in% i,]))] == 1]
u_i <- out[mat[idx %in% i,][,(ncol(mat[idx %in% i,]))] == 1]
dt[i] <- D2(y_i,u_i)
y_i <- as.numeric(y[idx %in% i])[mat[idx %in% i,][,(ncol(mat[idx %in% i,]))] == 0]
u_i <- out[mat[idx %in% i,][,(ncol(mat[idx %in% i,]))] == 0]
et[i] <- D2(y_i,u_i)
}
c <- ifelse(stats::median(ct, na.rm = TRUE) < 0,0,stats::median(ct, na.rm = TRUE))
d <- ifelse(stats::median(dt, na.rm = TRUE) < 0,0,stats::median(dt, na.rm = TRUE))
f <- ifelse(stats::median(et, na.rm = TRUE) < 0,0,stats::median(et, na.rm = TRUE))
}, error=function(e){})
output <- list('Model' = a, 'Predicted.Expression' = b, 'Overall.D2' = c, 'Class1.D2' = d, 'Class2.D2' = f)
return(output)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.