gen_simmba: This function generates simulated multi-omics data.

View source: R/gen_simmba.R

gen_simmbaR Documentation

This function generates simulated multi-omics data.

Description

Generates simulated multi-omics datasets with specified parameters, including sample size, signal-to-noise ratio, DE probabilities, and response variable generation mode. It also splits the data into training and testing sets.

Usage

gen_simmba(
  nsample,
  snr = 1,
  p.train = 0.7,
  de.prob = rep(0.1, 3),
  de.downProb = rep(0.5, 3),
  de.facLoc = rep(1, 3),
  de.facScale = rep(0.4, 3),
  ygen.mode = "Friedman",
  nrep = 100,
  seed = 1234
)

Arguments

nsample

Sample size

snr

Signal to noise ratio

p.train

Train-test split ratio

de.prob

DE probability across all modalities

de.downProb

Down-regulation probability

de.facLoc

DE factor location

de.facScale

DE factor scale

ygen.mode

Y generation mode

nrep

Number of repetitions

seed

Random seed

Value

List containing training and testing datasets

Examples

simulated_data <- gen_simmba(nsample = 100)

himelmallick/MimESys documentation built on April 13, 2025, 9:06 p.m.