##########################
# LabelRows Test
##########################
context("labelRows + full-workflow")
test_that("row annotation tests", {
data("plasma20")
data("plasma30")
p20 = metabData(plasma20, zero = TRUE, samples = "CHEAR")
p30 = metabData(plasma30, zero = TRUE, samples = "CHEAR")
p = metabCombiner(p30,p20, binGap = 0.0075)
p = selectAnchors(p, windx = 0.03, windy = 0.02)
set.seed(100)
p = fit_gam(p, k = seq(14,20,2), family = "gaussian", iterFilter = 2,
method = "GCV.Cp")
scores = evaluateParams(p, A = seq(60,100,10), B = seq(10,15),
C = seq(0,0.5,0.1), minScore = 0.7)
p = calcScores(p, A = scores$A[1], B = scores$B[1], C = scores$C[1])
p = labelRows(p, minScore = 0.5, maxRankX = 2, maxRankY = 2, useID = TRUE,
method = "score", delta = 0.1, remove = TRUE)
p.output = combinedTable(p)
labels = c("", "CONFLICT", "IDENTITY")
testthat::expect_equal(sort(unique(p.output[["labels"]])), labels)
testthat::expect_equal(sum(p.output[["labels"]] == "IDENTITY"), 527)
p.output.2 = dplyr::filter(p.output, .data$labels != "IDENTITY")
testthat::expect_equal(max(p.output.2[["rankX"]]), 2)
testthat::expect_equal(max(p.output.2[["rankY"]]), 2)
testthat::expect_false(any(p.output.2[["score"]] < 0.5))
testthat::expect_error(labelRows(p, method = "mzrt", delta = 0.1))
testthat::expect_error(labelRows(p, minScore = 1, delta = 0.1))
testthat::expect_error(labelRows(p, maxRankX = 0, delta = 0.1))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.