mpralm | R Documentation |
Fits weighted linear models to test for differential activity in MPRA data.
mpralm(object, design, aggregate = c("mean", "sum", "none"),
normalize = TRUE, normalizeSize = 10e6,
block = NULL, model_type = c("indep_groups", "corr_groups"),
plot = TRUE, endomorphic = FALSE, ...)
object |
An object of class |
design |
Design matrix specifying comparisons of interest. The
number of rows of this matrix should equal the number of columns
in |
aggregate |
Aggregation method over barcodes: |
normalize |
If |
normalizeSize |
If normalizing, the target library size (default is 10e6). |
block |
A vector giving the sample designations of the columns of
|
model_type |
Indicates whether an unpaired model fit
( |
plot |
If |
endomorphic |
If |
... |
Further arguments to be passed to |
Using method_type = "corr_groups"
use the
duplicateCorrelation
function from the limma
package to
estimate the intra-replicate correlation of log-ratio values.
An object of class MArrayLM
resulting from the eBayes
function.
If endomorphic = TRUE
, then an MPRASet
is returned,
with the output of topTable
added to the rowData
,
and the MArrayLM
results added as an attribute
"MArrayLM"
.
Myint, Leslie, Dimitrios G. Avramopoulos, Loyal A. Goff, and Kasper D. Hansen. Linear models enable powerful differential activity analysis in massively parallel reporter assays. BMC Genomics 2019, 209. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1186/s12864-019-5556-x")}.
Law, Charity W., Yunshun Chen, Wei Shi, and Gordon K. Smyth. Voom: Precision Weights Unlock Linear Model Analysis Tools for RNA-Seq Read Counts. Genome Biology 2014, 15:R29. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1186/gb-2014-15-2-r29")}.
Smyth, Gordon K., Joelle Michaud, and Hamish S. Scott. Use of within-Array Replicate Spots for Assessing Differential Expression in Microarray Experiments. Bioinformatics 2005, 21 (9): 2067-75. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1093/bioinformatics/bti270")}.
data(mpraSetAggExample)
design <- data.frame(intcpt = 1,
episomal = grepl("MT", colnames(mpraSetAggExample)))
mpralm_fit <- mpralm(object = mpraSetAggExample, design = design,
aggregate = "none", normalize = TRUE,
model_type = "indep_groups", plot = FALSE)
toptab <- topTable(mpralm_fit, coef = 2, number = Inf)
head(toptab)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.