R/BSmooth.tstat.R

Defines functions BSmooth.tstat

Documented in BSmooth.tstat

BSmooth.tstat <- function(BSseq, group1, group2, estimate.var = c("same", "paired", "group2"),
                          local.correct = TRUE, maxGap = NULL, qSd = 0.75, k = 21, mc.cores = 1, verbose = TRUE){
    smoothSd <- function(Sds, k) {
        k0 <- floor(k/2)
        if(all(is.na(Sds))) return(Sds)
        thresSD <- pmax(Sds, quantile(Sds, qSd, na.rm = TRUE), na.rm = TRUE)
        addSD <- rep(median(Sds, na.rm = TRUE), k0)
        sSds <- as.vector(runmean(Rle(c(addSD, thresSD, addSD)), k = k))
        sSds
    }
    compute.correction <- function(idx, qSd = 0.75) {
        xx <- start(BSseq)[idx]
        yy <- tstat[idx]
        suppressWarnings({
            drange <- diff(range(xx, na.rm = TRUE))
        })
        if(drange <= 25000)
            return(yy)
        tstat.function <- approxfun(xx, yy)
        xx.reg <- seq(from = min(xx), to = max(xx), by = 2000)
        yy.reg <- tstat.function(xx.reg)
        fit <- locfit(yy.reg ~ lp(xx.reg, h = 25000, deg = 2, nn = 0),
                      family = "huber", maxk = 50000)
        correction <- predict(fit, newdata = data.frame(xx.reg = xx))
        yy - correction
    }

    estimate.var <- match.arg(estimate.var)
    stopifnot(is(BSseq, "BSseq"))
    stopifnot(hasBeenSmoothed(BSseq))
    if(is.character(group1)) {
        stopifnot(all(group1 %in% sampleNames(BSseq)))
        group1 <- match(group1, sampleNames(BSseq))
    }
    if(is.numeric(group1)) {
        stopifnot(min(group1) >= 1 & max(group1) <= ncol(BSseq))
    } else stop("problems with argument 'group1'")
    if(is.character(group2)) {
        stopifnot(all(group2 %in% sampleNames(BSseq)))
        group2 <- match(group2, sampleNames(BSseq))
    }
    if(is.numeric(group2)) {
        stopifnot(min(group2) >= 1 & max(group2) <= ncol(BSseq))
    } else stop("problems with argument 'group2'")
    stopifnot(length(intersect(group1, group2)) == 0)
    stopifnot(length(group1) > 0)
    stopifnot(length(group2) > 0)
    stopifnot(length(group1) + length(group2) >= 3)
    if(estimate.var == "paired")
        stopifnot(length(group1) == length(group2))

    if (!.isHDF5ArrayBacked(getCoverage(BSseq))) {
        ## TODO: This check can be super expensive if Cov is a HDF5Matrix, so
        ##       we skip it for the time being. Really noticeable when Cov
        ##       needs row subsetted/reordered (i.e. has Cov@index[[1]] exists)
        ##
        if(any(rowSums2(getCoverage(BSseq)[, c(group1, group2)]) == 0)) {
            warning("Computing t-statistics at locations where there is no data; consider subsetting the 'BSseq' object first")
        }
    }

    if(is.null(maxGap))
        maxGap <- BSseq@parameters$maxGap
    if(is.null(maxGap))
        stop("need to set argument 'maxGap'")

    if(verbose) cat("[BSmooth.tstat] preprocessing ... ")
    ptime1 <- proc.time()
    clusterIdx <- makeClusters(BSseq, maxGap = maxGap)
    ptime2 <- proc.time()
    stime <- (ptime2 - ptime1)[3]
    if(verbose) cat(sprintf("done in %.1f sec\n", stime))

    if(verbose) cat("[BSmooth.tstat] computing stats within groups ... ")
    ptime1 <- proc.time()
    allPs <- getMeth(BSseq, type = "smooth", what = "perBase",
                     confint = FALSE)
    group1.means <- rowMeans2(allPs[, group1, drop = FALSE], na.rm = TRUE)
    group2.means <- rowMeans2(allPs[, group2, drop = FALSE], na.rm = TRUE)
    ptime2 <- proc.time()
    stime <- (ptime2 - ptime1)[3]
    if(verbose) cat(sprintf("done in %.1f sec\n", stime))

    if(verbose) cat("[BSmooth.tstat] computing stats across groups ... ")
    ptime1 <- proc.time()
    switch(estimate.var,
           "group2" = {
               rawSds <- .rowSds(x = allPs, cols = group2, na.rm = TRUE)
               smoothSds <- do.call(c, mclapply(clusterIdx, function(idx) {
                   smoothSd(rawSds[idx], k = k)
               }, mc.cores = mc.cores))
               scale <- sqrt(1/length(group1) + 1/length(group2))
               tstat.sd <- smoothSds * scale
           },
           "same" = {
               rawSds <- sqrt( ((length(group1) - 1) * .rowVars(x = allPs, cols = group1) +
                                    (length(group2) - 1) * .rowVars(x = allPs, cols = group2)) /
                                   (length(group1) + length(group2) - 2))
               smoothSds <- do.call(c, mclapply(clusterIdx, function(idx) {
                   smoothSd(rawSds[idx], k = k)
               }, mc.cores = mc.cores))
               scale <- sqrt(1/length(group1) + 1/length(group2))
               tstat.sd <- smoothSds * scale
           },
           "paired" = {
               rawSds <- .rowSds(x = allPs[, group1, drop = FALSE] - allPs[, group2, drop = FALSE])
               smoothSds <- do.call(c, mclapply(clusterIdx, function(idx) {
                   smoothSd(rawSds[idx], k = k)
               }, mc.cores = mc.cores))
               scale <- sqrt(1/length(group1))
               tstat.sd <- smoothSds * scale
           })
    tstat <- (group1.means - group2.means) / tstat.sd
    is.na(tstat)[tstat.sd == 0] <- TRUE
    if(local.correct) {
        tstat.corrected <- do.call(c, mclapply(clusterIdx,
                                               compute.correction, qSd = qSd,
                                               mc.cores = mc.cores))
    }
    ptime2 <- proc.time()
    stime <- (ptime2 - ptime1)[3]
    if(verbose) cat(sprintf("done in %.1f sec\n", stime))

    if(local.correct) {
        stats <- cbind(rawSds, tstat.sd, group2.means, group1.means,
                       tstat, tstat.corrected)
        colnames(stats) <- c("rawSds", "tstat.sd",
                             "group2.means", "group1.means", "tstat",
                             "tstat.corrected")

    } else {
        stats <- cbind(rawSds, tstat.sd, group2.means, group1.means,
                       tstat)
        colnames(stats) <- c("rawSds", "tstat.sd",
                             "group2.means", "group1.means", "tstat")
    }

    parameters <- c(BSseq@parameters,
                    list(tstatText = sprintf("BSmooth.tstat (local.correct = %s, maxGap = %d)",
                                             local.correct, maxGap),
                         group1 = group1, group2 = group2, k = k, qSd = qSd,
                         local.correct = local.correct, maxGap = maxGap))
    out <- BSseqTstat(gr = granges(BSseq), stats = stats, parameters = parameters)
    out
}
hansenlab/bsseq documentation built on Jan. 17, 2025, 3:15 p.m.