#' Balance training dataset
#'
#' @param mat count matrix of dimension m x n,
#' corresponding to m cells and n features
#' @param tag named list of training tags/labels (yes/no)
#' corresponding to a specific cell type, name and length of
#' list must be coherent with cells in mat
#'
#' @return a list of balanced count matrix
#' and corresponding tags of balanced count matrix
#' @rdname internal
balance_dataset <- function(mat, tag) {
message("Imbalanced dataset has: ", toString(nrow(mat)), " cells.")
n_pos = length(tag[tag == 'yes'])
n_neg = length(tag[tag == 'no'])
if (n_pos >= n_neg) {
cut_val = 'yes'
n_cut = n_neg
} else {
cut_val = 'no'
n_cut = n_pos
}
# get list of index that need to be cut off
cut_idx = names(tag[tag == cut_val])
# random a list for cut off observations
random_idx = sample(cut_idx, n_cut)
# subset n_cut observations
cut_mat = mat[random_idx,, drop = FALSE]
# subset the corresponding tag
cut_tag = tag[random_idx]
# refabricate the balanced dataset
balanced_mat = rbind(
cut_mat, mat[!rownames(mat) %in% cut_idx,, drop = FALSE])
balanced_tag = append(cut_tag, tag[tag != cut_val])
message("Balanced dataset has: ", toString(nrow(balanced_mat)), " cells.")
return_val = list("mat" = balanced_mat, "tag" = balanced_tag)
return(return_val)
}
#' Call training method
#'
#' @param mat count matrix of dimension m x n
#' corresponding to m cells and n features.
#' @param tag named list of training tags/labels (yes/no)
#' corresponding to a specific cell type, name and length of
#' list must be coherent with cells in mat
#'
#' @return the classification model (caret object)
#'
#' @import caret
#' @import e1071
#' @import ape
#' @rawNamespace import(kernlab, except = c(alpha, predict))
#' @rdname internal
train_func <- function(mat, tag) {
# calculate sigma
# calculate var of mat
# mat.vec <- as.vector(mat)
# mat.len <- length(mat.vec)
# mat.var <- var(mat.vec) * (mat.len - 1) / mat.len
# sigma <- 1 / (ncol(mat) * mat.var)
mat <- as.data.frame(mat)
mat$tag <- tag
clf <- caret::train(form = tag ~ ., data = mat,
method = "svmLinear",
tuneGrid = data.frame(.C = 1),
metrix = "Accuracy",
trControl = trainControl(method = "cv",
classProbs = TRUE, trim = TRUE, sampling = 'down',
returnData = FALSE, returnResamp = 'none')
)
return(clf)
}
#' Transform whole matrix of counts to z-score
#'
#' @param mat count matrix of dimension m x n
#' corresponding to m cells and n features
#'
#' @return row wise center-scaled count matrix
#'
#' @importFrom stats sd
#' @rdname internal
transform_to_zscore <- function(mat) {
# z_mat = scale(mat) # this cause NaN when column has zero variance
z_mat <- apply(mat, 2, function(y)
(y - mean(y)) / stats::sd(y) ^ as.logical(stats::sd(y)))
return(z_mat)
}
#' Load classifiers from databases
#'
#' @param path_to_models path to databases, or by default
#'
#' @return list of classifiers
#'
#' @importFrom utils data
#' @rdname internal
load_models <- function(path_to_models) {
# prevents R CMD check note
model_list <- new_models <- default_models <- NULL
if ("default" %in% path_to_models) {
utils::data("default_models", envir = environment())
model_list <- default_models
} else {
models_path <- paste0(path_to_models, "/new_models.rda")
if (!file.exists(models_path)) {
cat("No model found in provided path to models")
} else {
load(models_path, envir = environment())
# models are stored in a variable called new_models
model_list <- new_models
}
}
return(model_list)
}
#' Perform features selection and handle missing features
#'
#' @param mat count matrix of dimension n x m
#' corresponding to m cells and n features
#' @param features list of selected features
#'
#' @return filtered matrix
#' @rdname internal
select_features <- function(mat, features) {
filtered_mat <- mat[rownames(mat) %in% features,, drop = FALSE]
# perform features selection
if (any(!features %in% rownames(filtered_mat))) {
# cannot perform features selection
# cat("Not enough features for parent classifier.
# Cannot rerun pretrained classifier for parent cell type.\n")
addi_features <- features[!features %in% rownames(filtered_mat)]
zero_vec <- c(rep(0, ncol(filtered_mat)))
for (feature in addi_features) {
filtered_mat <- rbind(filtered_mat, zero_vec)
rownames(filtered_mat)[nrow(filtered_mat)] <- feature
}
}
return(filtered_mat)
}
#' Check label coherence in parent and child cell type
#'
#' @param obj object
#' @param pos_parent a vector indicating parent clf prediction
#' @param parent_cell name of parent cell type
#' @param cell_type name of child cell type
#' @param target_cell_type alternative cell types (in case of testing clf)
#' @param ... arguments passed to other methods
#'
#' @return list of adjusted object and adjusted tag slot
#' @rdname internal
setGeneric("check_parent_child_coherence",
function(obj, pos_parent, parent_cell, cell_type,
target_cell_type, ...)
standardGeneric("check_parent_child_coherence"))
#' @inherit check_parent_child_coherence
#'
#' @description Check label coherence in parent and
#' child cell type in a \code{\link{Seurat}} object.
#'
#' @param tag_slot tag slot in \code{\link{Seurat}} object
#' indicating cell type
#'
#' @importFrom Seurat Idents
#'
#' @rdname check_parent_child_coherence
setMethod("check_parent_child_coherence", c("obj" = "Seurat"),
function(obj, pos_parent, parent_cell, cell_type,
target_cell_type, tag_slot) {
pos.val <- c(1, "yes", TRUE)
# prepare (sub) cell type tag
if (tag_slot == "active.ident") {
subtype <- Seurat::Idents(obj)
test <- tolower(subtype) %in% tolower(target_cell_type) |
subtype %in% pos.val
pos_subtype <- as.data.frame(subtype[test])
} else {
subtype <- obj[[tag_slot]]
test <- tolower(subtype[, 1]) %in% tolower(target_cell_type) |
subtype[, 1] %in% pos.val
pos_subtype <- subtype[test,, drop=FALSE]
}
#-- compare with cell type with parent cell type,
# ie. cell, which is cell_type, must also be cell_parent
# if not, raise warnings
if (any(!rownames(pos_subtype) %in% pos_parent)) {
warning("Some annotated ", cell_type, " are negative to ",
parent_cell, " classifier. They are removed from training/testing for ",
cell_type, " classifier.\n", call. = FALSE, immediate. = TRUE)
}
tag_slot <- "new_tag_slot"
# join parent cell type and child cell type
test <-
(colnames(obj) %in% rownames(pos_subtype)) &
(colnames(obj) %in% pos_parent)
new.tag_slot <- ifelse(test, 'yes', 'no')
new.tag_slot <- unlist(
lapply(seq_len(length(new.tag_slot)), function(i)
if (!colnames(obj)[i] %in% pos_parent) {"not applicable"}
else {new.tag_slot[i]})
)
names(new.tag_slot) <- colnames(obj)
obj[[tag_slot]] <- new.tag_slot
return_val = list('adjusted_object' = obj, 'adjusted_tag_slot' = tag_slot)
return(return_val)
})
#' @inherit check_parent_child_coherence
#'
#' @description Check label coherence in parent and child cell type
#' in a \code{\link{SingleCellExperiment}} object
#'
#' @param tag_slot tag slot in \code{\link{SingleCellExperiment}} object
#' indicating cell type
#'
#' @importFrom SummarizedExperiment colData
#'
#' @rdname check_parent_child_coherence
setMethod("check_parent_child_coherence", c("obj" = "SingleCellExperiment"),
function(obj, pos_parent, parent_cell, cell_type,
target_cell_type, tag_slot) {
pos.val <- c(1, "yes", TRUE)
# prepare (sub) cell type tag
x <- SummarizedExperiment::colData(obj)[, tag_slot]
subtype.bin <- ( tolower(x) %in% tolower(target_cell_type) | x %in% pos.val)
pos_subtype.names <- colnames(obj)[subtype.bin]
#-- compare with cell type with parent cell type,
# ie. cell, which is cell_type, must also be cell_parent
# if not, raise warnings
if (any(!pos_subtype.names %in% pos_parent)) {
warning("Some annotated ", cell_type, " are negative to ",
parent_cell, " classifier. They are removed from training/testing for ",
cell_type, " classifier.\n", call. = FALSE, immediate. = TRUE)
}
tag_slot <- "new_tag_slot"
# join parent cell type and child cell type
new.tag_slot <- unlist(lapply(colnames(obj), function(x)
if (x %in% pos_subtype.names && x %in% pos_parent) {"yes"} else {"no"}))
new.tag_slot <- unlist(lapply(seq_len(length(new.tag_slot)), function(i)
if (!colnames(obj)[i] %in% pos_parent) {"not applicable"}
else {new.tag_slot[i]}))
SummarizedExperiment::colData(obj)[, tag_slot] <- new.tag_slot
return_val = list('adjusted_object' = obj, 'adjusted_tag_slot' = tag_slot)
return(return_val)
})
#' Filter cells from ambiguous chars and non applicable cells
#' Ambiguous characters includes: "/", ",", "-", "+", ".", "and",
#' "or", "(", ")", "ambiguous"
#'
#' @param obj object
#' @param tag_slot slot in cell meta data indicating cell type
#' @rdname internal
setGeneric("filter_cells", function(obj, tag_slot)
standardGeneric("filter_cells"))
#' @inherit filter_cells
#'
#' @description Filter cells from ambiguous chars and
#' non applicable cells in a \code{\link{Seurat}} object
#'
#' @return adjusted \code{\link{Seurat}} object
#'
#' @rdname internal
setMethod("filter_cells", c("obj" = "Seurat"), function(obj, tag_slot) {
# define characters usually included in ambiguous cell types
# this is to avoid considering ambiguous cell types as negative cell_type
ambiguous.chars <- c("/", ",", " -", " [+]", "[.]", " and ",
" or ", "_or_", "-or-", "[(]" ,"[)]", "ambiguous")
# only eliminate cell labels containing cell_type and ambiguous.chars
if (tag_slot == "active.ident") {
cell.tags <- Seurat::Idents(obj)
cell.tags <- as.data.frame(cell.tags)
rownames(cell.tags) <- names(Seurat::Idents(obj))
} else {
cell.tags <- obj[[tag_slot]]
}
# positive.cells <- rownames(cell.tags[cell.tags[, 1] %in% pos.val
# | tolower(cell.tags[, 1]) %in% tolower(cell_type),, drop = F])
# positive cells must not contain ambiguous chars
ambiguous.cells <-
rownames(cell.tags[grepl(paste(ambiguous.chars, collapse="|"),
cell.tags[, 1]),, drop = FALSE])
n.applicable.cells <-
rownames(cell.tags[grepl("not applicable", cell.tags[, 1])
| is.na(cell.tags[, 1]),, drop = FALSE])
if (length(ambiguous.cells) != 0)
warning('Cell types containing "/", ",", "-", "+", ".", "and", "or", "(", ")", and "ambiguous" are considered as ambiguous. They are removed from training and testing.\n',
call. = FALSE, immediate. = TRUE)
keeping.cells <-
colnames(obj)[!((colnames(obj) %in% ambiguous.cells)
| colnames(obj) %in% n.applicable.cells)]
obj <- subset(obj, cells = keeping.cells)
return(obj)
})
#' @inherit filter_cells
#'
#' @description Filter cells from ambiguous chars and non applicable cells
#' in a \code{\link{SingleCellExperiment}} object
#'
#' @return adjusted \code{\link{SingleCellExperiment}} object
#'
#' @importFrom SingleCellExperiment colData
#'
#' @rdname internal
setMethod("filter_cells", c("obj" = "SingleCellExperiment"),
function(obj, tag_slot) {
# define characters usually included in ambiguous cell types
# this is to avoid considering ambiguous cell types as negative cell_type
ambiguous.chars <- c("/", ",", " -", " [+]", "[.]", " and ",
" or ", "_or_", "-or-", "[(]" ,"[)]", "ambiguous")
# only eliminate cell labels containing cell_type and ambiguous.chars
cell.tags <- SummarizedExperiment::colData(obj)[, tag_slot]
# positive.cells <- rownames(cell.tags[cell.tags[, 1] %in% pos.val
# | tolower(cell.tags[, 1]) %in% tolower(cell_type),, drop = F])
# positive cells must not contain ambiguous chars
ambiguous <- grepl(paste(ambiguous.chars, collapse="|"), cell.tags)
n.applicable <- (grepl("not applicable", cell.tags) | is.na(cell.tags))
if (any(ambiguous))
warning('Cell types containing "/", ",", "-", "+", ".", "and", "or", "(", ")", and "ambiguous" are considered as ambiguous. They are removed from training and testing.\n',
call. = FALSE, immediate. = TRUE)
obj <- obj[, !(ambiguous | n.applicable)]
return(obj)
})
#' Construct tag vector
#'
#' @param obj object
#' @param cell_type name of cell type
#' @param ... arguments passed to other methods
#'
#' @importFrom stats setNames
#'
#' @return a binary vector for cell tag
#'
#' @rdname internal
setGeneric("construct_tag_vect",
function(obj, cell_type, ...)
standardGeneric("construct_tag_vect"))
#' @inherit construct_tag_vect
#'
#' @description Construct a uniform tag vector for all forms of labels
#' in a \code{\link{Seurat}} object
#'
#' @param tag_slot tag slot in \code{\link{Seurat}} object indicating cell type
#'
#' @importFrom Seurat Idents
#'
#' @rdname internal
setMethod("construct_tag_vect", c("obj" = "Seurat"),
function(obj, cell_type, tag_slot) {
pos.val <- c(1, "yes", TRUE)
# construct new tag
if (tag_slot == "active.ident")
x <- Seurat::Idents(obj)
else
x <- obj[[tag_slot]][, 1]
test <- (x %in% pos.val) | (tolower(x) %in% tolower(cell_type))
tag <- ifelse(test, "yes", "no")
named_tag = setNames(tag, colnames(obj))
return(named_tag)
})
#' @inherit construct_tag_vect
#'
#' @description Construct a uniform tag vector for all forms of labels
#' in a \code{\link{SingleCellExperiment}} object
#'
#' @param tag_slot tag slot in \code{\link{SingleCellExperiment}} object
#' indicating cell type
#'
#' @importFrom SummarizedExperiment colData
#'
#' @rdname internal
setMethod("construct_tag_vect", c("obj" = "SingleCellExperiment"),
function(obj, cell_type, tag_slot) {
pos.val <- c(1, "yes", TRUE)
x <- SummarizedExperiment::colData(obj)[, tag_slot]
test <- (x %in% pos.val) | (tolower(x) %in% tolower(cell_type))
tag <- ifelse(test, "yes", "no")
named_tag = setNames(tag, colnames(obj))
return(named_tag)
})
#' Process parent clf
#'
#' @param obj object
#' @param parent_tag_slot string, name of annotation tag slot in object
#' indicating pre-assigned/predicted parent cell type
#' @param parent_cell_type name of parent cell type
#' @param parent_clf \code{\link{scClassifR}} object corresponding
#' to classification model for the parent cell type
#' @param path_to_models path to databases, or by default
#' @param zscore boolean indicating the transformation of gene expression
#' in object to zscore or not
#' @param ... arguments passed to other methods
#'
#' @return list of cells which are positive to parent clf
#'
#' @importFrom stats predict
#' @import dplyr
#'
#' @rdname internal
setGeneric("process_parent_clf",
function(obj, parent_tag_slot, parent_cell_type, parent_clf,
path_to_models, zscore = TRUE, ...)
standardGeneric("process_parent_clf"))
#' @inherit process_parent_clf
#'
#' @description Process parent classifier in a \code{\link{Seurat}} object
#'
#' @param seurat_assay name of assay to use in \code{\link{Seurat}} object
#' @param seurat_slot type of expression data to use in
#' \code{\link{Seurat}} object
#'
#' @importFrom Seurat GetAssayData
#' @importFrom Seurat Idents
#'
#' @rdname internal
setMethod("process_parent_clf", c("obj" = "Seurat"),
function(obj, parent_tag_slot, parent_cell_type,
parent_clf, path_to_models, zscore = TRUE,
seurat_assay, seurat_slot, ...) {
pos_parent <- parent.clf <- . <- model_list <- NULL
if (is.na(parent_cell_type) && !is.null(parent_clf))
parent_cell_type <- cell_type(parent_clf)
# if sub cell type is indicated
if (!is.na(parent_cell_type)) {
#-- apply parent cell classifier
if (is.null(parent_clf)) {
message("Parent classifier not provided. Try finding available model.")
model_list <- load_models(path_to_models)
if (parent_cell_type %in% names(model_list)) {
parent.clf <- model_list[[parent_cell_type]]
} else {
message("No available model for parent cell type")
}
}
else {
parent.clf <- parent_clf
}
if (!is.null(parent.clf)) {
message("Apply pretrained model for parent cell type.")
# convert Seurat object to matrix
mat = Seurat::GetAssayData(object = obj,
assay = seurat_assay, slot = seurat_slot)
filtered_mat <- select_features(mat, features(parent.clf))
filtered_mat <- t(as.matrix(filtered_mat))
# transform mat to zscore values
if (zscore == TRUE) {
filtered_mat <- transform_to_zscore(filtered_mat)
}
# to avoid problem triggered by '-' in gene names
colnames(filtered_mat) <- gsub('-', '_', colnames(filtered_mat))
# add G_ to beginning of gene names to prevent starting by digits
colnames(filtered_mat) <- unlist(lapply(colnames(filtered_mat),
function(x)
if(grepl('^[[:digit:]]', x))
{paste0('G_', x)}
else {x}))
# predict
pred = stats::predict(clf(parent.clf), filtered_mat, type = "prob") %>%
dplyr::mutate('class' = apply(., 1,
function(x) if(x[1] >= p_thres(parent.clf)) {"yes"} else {"no"}))
rownames(pred) <- rownames(filtered_mat)
pos_parent <- rownames(pred[pred$class == "yes",])
} else if (!is.null(parent_tag_slot)) { # try with predicted tag slot
message("Parent classifier could not be applied.
Try with predicted/pre-assigned cell type.")
if (parent_tag_slot == 'active.ident') {
cell_type_anno <- Seurat::Idents(obj)
pos_parent <- names(cell_type_anno[tolower(cell_type_anno)
== tolower(parent_cell_type)])
} else {
cell_type_anno <- obj[[parent_tag_slot]][, 1]
pos_parent <- colnames(obj)[tolower(cell_type_anno) ==
tolower(parent_cell_type)]
}
} else { # only parent cell type provided but no parent clf can be used
stop("Neither parent classifier nor parent tag slot applied.
Parent cell type verification failed.
Please check parent classifier/parent tag slot
or remove parent cell type information.", call. = FALSE)
}
}
return_val <- list('pos_parent' = pos_parent, 'parent_cell' = parent_cell_type,
'parent.clf' = parent.clf, 'model_list' = model_list)
return(return_val)
})
#' @inherit process_parent_clf
#'
#' @description Process parent classifier in
#' a \code{\link{SingleCellExperiment}} object
#'
#' @param sce_assay name of assay to use
#' in \code{\link{SingleCellExperiment}} object
#'
#' @import SingleCellExperiment
#' @importFrom SummarizedExperiment assay
#'
#' @rdname internal
setMethod("process_parent_clf", c("obj" = "SingleCellExperiment"),
function(obj, parent_tag_slot, parent_cell_type, parent_clf,
path_to_models, zscore = TRUE, sce_assay, ...) {
pos_parent <- parent.clf <- . <- model_list <- NULL
if (is.na(parent_cell_type) && !is.null(parent_clf))
parent_cell_type <- cell_type(parent_clf)
# if sub cell type is indicated
if (!is.na(parent_cell_type)) {
#-- apply parent cell classifier
# get parent classifier
if (is.null(parent_clf)) {
message("Parent classifier not provided. Try finding available model.")
model_list <- load_models(path_to_models)
if (parent_cell_type %in% names(model_list)) {
parent.clf <- model_list[[parent_cell_type]]
} else {
message("No available model for parent cell type")
}
}
else {
parent.clf <- parent_clf
}
if (!is.null(parent.clf)) {
message("Apply pretrained model for parent cell type.\n")
# convert Seurat object to matrix
mat = SummarizedExperiment::assay(obj, sce_assay)
filtered_mat <- select_features(mat, features(parent.clf))
filtered_mat <- t(as.matrix(filtered_mat))
# transform mat to zscore values
if (zscore == TRUE) {
filtered_mat <- transform_to_zscore(filtered_mat)
}
# to avoid problem triggered by '-' in gene names
colnames(filtered_mat) <- gsub('-', '_', colnames(filtered_mat))
# add G_ to beginning of gene names to prevent starting by digits
colnames(filtered_mat) <- unlist(lapply(colnames(filtered_mat),
function(x)
if(grepl('^[[:digit:]]', x))
{paste0('G_', x)}
else {x}))
# predict
pred = stats::predict(clf(parent.clf), filtered_mat, type = "prob") %>%
dplyr::mutate('class' = apply(., 1,
function(x) if(x[1] >= p_thres(parent.clf)) {"yes"} else {"no"}))
rownames(pred) <- rownames(filtered_mat)
pos_parent <- rownames(pred[pred$class == "yes",])
} else if (!is.null(parent_tag_slot)) { # try with predicted tag slot
message("Parent classifier could not be applied.
Try with predicted/pre-assigned cell type.")
cell_type_anno <- colData(obj)[, parent_tag_slot]
pos_parent <- colnames(obj)[tolower(cell_type_anno)
== tolower(parent_cell_type)]
} else {
# only parent cell type provided but no parent clf/tag slot can be used
stop("Neither parent classifier nor parent tag slot applied.
Parent cell type verification failed.
Please check parent classifier/parent
tag slot or remove parent cell type information.", call. = FALSE)
}
}
return_val <- list('pos_parent' = pos_parent, 'parent_cell'= parent_cell_type,
'parent.clf' = parent.clf, 'model_list' = model_list)
return(return_val)
})
#' Make prediction
#'
#' @param mat count matrix used for prediction
#' @param classifier classifier
#' @param pred_cells a whole prediction for all cells
#' @param ignore_ambiguous_result whether ignore ambigouous result
#'
#' @return prediction
#'
#' @import dplyr
#' @importFrom stats predict
#'
#' @rdname internal
make_prediction <- function(mat, classifier, pred_cells,
ignore_ambiguous_result = TRUE) {
. <- NULL
cells <- names(pred_cells)
# to avoid problem triggered by '-' in gene names
colnames(mat) <- gsub('-', '_', colnames(mat))
colnames(mat) <- unlist(lapply(colnames(mat),
function(x)
if(grepl('^[[:digit:]]', x))
{paste0('G_', x)}
else {x}))
# predict
pred = stats::predict(clf(classifier), mat, type = "prob") %>%
dplyr::mutate('class' = apply(., 1, function(x)
if(x[1] >= p_thres(classifier)) {"yes"} else {"no"}))
rownames(pred) <- rownames(mat)
# append a summary to whole predicted cell type
pred_cells <- unlist(lapply(cells,
function(i)
if (i %in% rownames(pred) && pred[i, "class"] == "yes") {
test <-
ignore_ambiguous_result == TRUE &&
!is.na(parent(classifier)) &&
gsub("/", "", pred_cells[i]) == parent(classifier)
if (test)
paste0("/", cell_type(classifier))
else
paste0(pred_cells[i], "/", cell_type(classifier))
}
else { pred_cells[i] }))
names(pred_cells) <- cells
# remove no column and rename yes column to p
pred$no <- NULL
colnames(pred)[1] <- 'p'
# add cell type to colnames
colnames(pred) <- unlist(
lapply(colnames(pred), function(x)
paste0(
c(unlist(strsplit(cell_type(classifier), split = " ")), x),
collapse = "_")
)
)
return_val <- list('pred' = pred, 'pred_cells' = pred_cells)
return(return_val)
}
#' Simplify prediction
#'
#' @param meta.data cell meta data
#' @param full_pred full prediction
#' @param classifiers classifiers
#'
#' @return simplified prediction
#'
#' @rdname internal
simplify_prediction <- function(meta.data, full_pred, classifiers) {
if (is.null(names(classifiers)))
names(classifiers) <- unlist(lapply(classifiers, function(x) cell_type(x)))
# list of parents named by children
parents <- unlist(lapply(classifiers, function(x) parent(x)))
simplified <- full_pred
names(simplified) <- rownames(meta.data)
# parent level
for (cell in rownames(meta.data)) {
predicted_types <- unlist(strsplit(full_pred[cell], split = '/'))
#predicted_parents <- parents[parents %in% predicted_types]
if (length(predicted_types) >= 2) {
p.pcol.names <- paste0(gsub(' ', '_', predicted_types), '_p')
p.prob <- meta.data[cell, p.pcol.names, drop = FALSE]
simplified[cell] <- colnames(p.prob)[which.max(p.prob)]
}
}
simplified <- gsub('_p$', '', simplified)
simplified <- gsub('_', ' ', simplified)
# continue to deeper level: children
simplified.copy <- NULL
while (!identical(simplified, simplified.copy)) {
simplified.copy <- simplified # copy simplified
for (cell in rownames(meta.data)) {
parent <- simplified[cell]
if (parent %in% parents){
children <- names(which(parents == parent))
predicted_types <- unlist(strsplit(full_pred[cell], split = '/'))
predicted_children <- children[children %in% predicted_types]
if (length(predicted_children) >= 2) {
c.pcol.names <- paste0(gsub(' ', '_', predicted_children), '_p')
c.prob <- meta.data[cell, c.pcol.names, drop = FALSE]
simplified[cell] <- colnames(c.prob)[which.max(c.prob)]
} else if (length(predicted_children) == 1) {
simplified[cell] <- predicted_children
} else simplified[cell] <- simplified[cell]
}
}
simplified <- gsub('_p$', '', simplified)
simplified <- gsub('_', ' ', simplified)
}
return(simplified)
}
#' Verify parent prediction
#'
#' @param mat expression matrix
#' @param classifier classifier
#' @param meta.data object meta data
#'
#' @return applicable matrix
#'
#' @rdname internal
verify_parent <- function(mat, classifier, meta.data) {
pos_parent <- applicable_mat <- NULL
# parent clf, if avai, always has to be applied before children clf.
parent_slot <- paste0(
c(unlist(strsplit(parent(classifier), split = " ")), "class"),
collapse = "_")
if (parent_slot %in% colnames(meta.data)) {
parent_pred <- meta.data[, parent_slot]
pos_parent <- colnames(mat)[parent_pred == 'yes']
} else {
warning('Parent classifier of ', cell_type(classifier), 'cannot be applied.\n
Please list/save parent classifier before child(ren) classifier.\n
Skip applying classification models for ', cell_type(classifier),
' and its parent cell type.\n', call. = FALSE, immediate. = TRUE)
}
if (!is.null(pos_parent)) {
applicable_mat <- mat[, colnames(mat) %in% pos_parent, drop = FALSE]
} # else next
return(applicable_mat)
}
#' Test clf performance
#'
#' @param mat expression matrix
#' @param classifier classifier
#' @param tag tag of data
#'
#' @return clf performance
#' @import dplyr
#' @import pROC
#' @importFrom stats predict
#'
#' @rdname internal
test_performance <- function(mat, classifier, tag) {
overall.roc <- . <- NULL
# to avoid problem triggered by '-' in gene names
colnames(mat) <- gsub('-', '_', colnames(mat))
colnames(mat) <- unlist(lapply(colnames(mat),
function(x)
if(grepl('^[[:digit:]]', x))
{paste0('G_', x)}
else {x}))
tag <- unlist(lapply(tag, function(x) if (x == 'yes') {1} else {0}))
iter <- unique(sort(c(p_thres(classifier), seq(0.1, 0.9, by = 0.1))))
# predict
for (thres in iter) {
test_pred = stats::predict(clf(classifier), mat, type = "prob") %>%
dplyr::mutate('class' = apply(., 1, function(x)
if(x[1] >= thres) {1} else {0}))
rownames(test_pred) <- rownames(mat)
# calculate TPR, FPR
pr <- ROCR::prediction(test_pred$class, tag)
pe <- ROCR::performance(pr, "tpr", "fpr")
roc.data <- data.frame(fpr=unlist(pe@x.values), tpr=unlist(pe@y.values))
if (thres == p_thres(classifier)) {
pred <- test_pred
message('Current probability threshold: ', toString(p_thres(classifier)))
# accuracy
message(" ", "\t\tPositive", "\tNegative", "\tTotal")
message("Actual", "\t\t", toString(length(tag[tag == 1])),
"\t\t", toString(length(tag[tag == 0])),
"\t\t", toString(length(tag)))
message("Predicted", "\t",
toString(nrow(test_pred[test_pred$class == 1,])),
"\t\t", toString(nrow(test_pred[test_pred$class == 0,])),
"\t\t", toString(nrow(test_pred)), "\n")
count <- 0
for (i in seq_len(length(tag))) { # can improve this later
if (tag[i] == test_pred$class[i])
count <- count + 1
}
acc <- count/length(tag)
message("Accuracy: ", toString(acc), "\n")
message("Sensivity (True Positive Rate) for ",
cell_type(classifier), ": ", toString(roc.data[2, 2]))
message("Specificity (1 - False Positive Rate) for ",
cell_type(classifier), ": ", toString(1 - roc.data[2, 1]))
}
# add new result to overall
overall.roc <- rbind(overall.roc,
c(thres, roc.data[2, 1], roc.data[2, 2]))
}
# calculate AUC
roc_obj <- pROC::roc(tag, test_pred$yes, levels = c(0, 1), direction = "<")
auc_obj = pROC::auc(roc_obj)
message("Area under the curve: ", toString(auc_obj))
colnames(overall.roc) <- c('p_thres', 'fpr', 'tpr')
return_val = list("pred" = pred, "acc" = acc, "test_tag" = tag,
"overall_roc" = overall.roc, 'auc' = auc_obj)
return(return_val)
}
#' Test clf performance
#'
#' @param clusts cluster info
#' @param most_probable_cell_type predicted cell type
#'
#' @rdname internal
classify_clust <- function(clusts, most_probable_cell_type) {
clust.cell.coor <- table(most_probable_cell_type, clusts)
max.val <- apply(clust.cell.coor, 2, function(x) max(x)/sum(x))
names(max.val) <-
unname(apply(clust.cell.coor, 2,
function(x) rownames(clust.cell.coor)[which.max(x)]))
clust.pred <- paste0(round(max.val * 100, 2), '% ', names(max.val))
names(clust.pred) <- levels(clusts)
converted_pred <- unlist(lapply(clusts, function(x) clust.pred[[x]]))
return(converted_pred)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.