# statdis Returns the stationary distribution of a Markov chain.
# Use : w = statdis(A), where A is the transition matrix.
statdis <- function(A)
{
# Max deviation from 1 (beware parameters may have
# been computed in float)
MAX_DEV <- 1e-6
if(missing(A)) {stop("Transition matrix A is missing.")}
# Check that A is a transition matrix
N <- dim(A)[1]
Nc <- dim(A)[2]
if(Nc != N) {
stop("Transition matrix must be square.")
}
if(any(A<0) || any(A>1)){
stop("Inconsistent number in transition matrix.")
}
if(any(abs(apply(A, 1, sum) - 1) > MAX_DEV)) {
stop("Transition matrix is not normalized.")
}
# Compute left eigenvalues
e <- eigen(t(A))
V <- e$vector
d <- matrix(e$values)
n1 <- (d > 1-MAX_DEV)
if(sum(n1) == 1){
# Stationnary distribution is given by the left eigenvector corresponding
# to the eigenvalue 1
w <- t(V[,n1])
w <- w/sum(w)
} else {
if(sum(n1) > 1) {
warning(sprintf("Warning: transition matrix is not irreducible\n"))
w <- t(V[,n1])
for(i in 1:length(w[,1])) {
w[i,] <- w[i,]/sum(w[i,])
}
} else {
# This should never happen if A is a transition matrix
stop("matrix does not seem to be a transition matrix")
}
}
return(w)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.