#' Class to store breakpoint annotations in association with genomic features (e.g. gene loci)
#' @param breaks (data.table): the breakpoint info containing data.table, this will be occupied by the CNV segmentation data in the case of cnv.break.annot or SV for sv.break.annot. Unique random string rownames are added to the returned breaks data.frame.
#' @param burden (numeric): a vector containing the total number of breakpoints in each sample
#' @param param (list): a list of parametres provided
#' @return an instance of the class 'breaks' containing breakpoint and breakpoint burden information
#' @export
breaks <- setClass("breaks", representation(
breaks = "data.table",
burden = "numeric",
param = "list"
))
setMethod("show","breaks",function(object){
writeLines(paste("An object of class breaks from svpluscnv containing",object@param$datatype,"breakpoints:
\nNumber of samples=",length(object@burden),
"\nTotal number of breakpoints =",nrow(object@breaks)))
})
#' Identify CNV breakpoints filtered by the change in copy number logRs between contiguous segments
#' @param cnv (S4) an object of class svcnvio containing data type 'cnv' validated by validate.cnv
#' @param fc.pct (numeric) copy number change between 2 consecutive segments: i.e (default) cutoff = 0.2 represents a fold change of 0.8 or 1.2
#' @param break.width (numeric) the maximum distance between a segment end and the subsequent segment start positions beyond which breakpoints are discarded
#' @param min.cnv.size (numeric) The minimun segment size (in base pairs) to include in the analysis
#' @param min.num.probes (numeric) The minimun number of probes per segment to include in the analysis
#' @param low.cov (data.frame) a data.frame (chr, start, end) indicating low coverage regions to exclude from the analysis
#' @param clean.brk (numeric) identical breakpoints across multiple samples tend to be artifacts; remove breaks > N
#' @return an instance of the class 'breaks' containing breakpoint and breakpoint burden information
#' @keywords CNV, segmentation
#' @export
#' @examples
#'
#' ## Obtain breakpoints from segmentation data
#' cnv <- validate.cnv(segdat_lung_ccle)
#'
#' cnv.breaks(cnv)
cnv.breaks <- function(cnv,
fc.pct = 0.2,
break.width = 10000,
min.cnv.size = NULL,
min.num.probes=NULL,
chrlist=NULL,
low.cov=NULL,
clean.brk=NULL,
verbose=TRUE){
stopifnot(cnv@type == "cnv")
cnvdat <- cnv@data
if(is.null(chrlist)) chrlist <- unique(cnvdat$chrom)
chrlist <- chr.sort(chrlist)
brk.burden <- rep(0,length(unique(cnvdat$sample)))
names(brk.burden) <- unique(cnvdat$sample)
if(!is.null(min.cnv.size)) cnvdat <- cnvdat[which(cnvdat$end - cnvdat$start >= min.cnv.size),]
if(!is.null(min.num.probes)) cnvdat <- cnvdat[which(cnvdat$probes >= min.num.probes),]
lastrow <- nrow(cnvdat)
pos <- round(apply(cbind(cnvdat[2:(lastrow),"start"], cnvdat[1:(lastrow-1),"end"]),1,mean))
chrom <- cnvdat[2:(lastrow),"chrom"]
sample <- cnvdat[2:(lastrow),"sample"]
width <- cnvdat[2:(lastrow),"start"] - cnvdat[1:(lastrow-1),"end"]
FC <- (2^cnvdat[1:(lastrow-1),"segmean"]) / (2^cnvdat[2:lastrow,"segmean"])
uid <- paste("brk_",createRandomString(nrow(cnvdat)-1,8),sep="")
breakpoints <- data.table(sample,chrom,pos,width,FC,uid)
colnames(breakpoints) <- c("sample","chrom","pos","width","FC","uid")
break_idx <- c(which( log2(FC) >= log2(1+fc.pct)),which( log2(FC) < log2(1 - fc.pct)))
samechr <- which(apply(cbind(cnvdat[1:(lastrow-1),"chrom"],cnvdat[2:(lastrow),"chrom"]),1,anyDuplicated) == 2)
samesample <- which(apply(cbind(cnvdat[1:(lastrow-1),"sample"],cnvdat[2:(lastrow),"sample"]),1,anyDuplicated) == 2)
if(is.null(break.width)) break.width <- Inf
brwidthin <- which(width < break.width)
breakpoints <- breakpoints[Reduce(intersect, list(break_idx,samechr,samesample,brwidthin)),]
if(!is.null(low.cov)){
message("Filtering breakpoints in low coverage regiomns")
colnames(low.cov) <- c("chrom","start","end")
low_cov_GR = with(low.cov, GRanges(chrom, IRanges(start=start, end=end)))
breakpoints_GR = with(breakpoints, GRanges(chrom, IRanges(start=start, end=end)))
overlapgr <- GenomicAlignments::findOverlaps(breakpoints_GR,low_cov_GR,ignore.strand=TRUE)
breakpoints <- breakpoints[setdiff(1:nrow(breakpoints),queryHits(overlapgr)),]
}
if(!is.null(clean.brk)){
breakids <- unite(breakpoints[,c(2:4)],newcol)$newcol
breakids.freq <- sort(table(breakids),decreasing=TRUE)
breakpoints <- breakpoints[which(breakids %in% names(which(breakids.freq < clean.brk))),]
}
brk.burden.sub <- table(breakpoints$sample)
brk.burden[names(brk.burden.sub)] <- brk.burden.sub
return(breaks(breaks=breakpoints,
burden=brk.burden,
param=list(
datatype=cnv@type,
fc.pct = fc.pct,
min.cnv.size = min.cnv.size,
min.num.probes=min.num.probes,
low.cov=low.cov,
clean.brk=clean.brk
)
)
)
}
#' Transform structural variant (SVC) data.frame into a 'breaks' object
#' @param svc (S4) an object of class svcnvio containing data type 'svc' validated by validate.svc
#' @param low.cov (data.table) a data.table (chrom, start, end) indicating low coverage regions to exclude from the analysis
#' @return an instance of the class 'breaks' containing breakpoint and breakpoint burden information
#' @keywords Structural variants
#' @export
#' @examples
#'
#' ## Obtain breakpoints from SV calls data
#' svc <- validate.svc(svdat_lung_ccle)
#'
#' svc.breaks(svc)
svc.breaks <- function(svc, low.cov=NULL){
stopifnot(svc@type == "svc")
svcdat <- svc@data
brk.burden <- rep(0,length(unique(svcdat$sample)))
names(brk.burden) <- unique(svcdat$sample)
uid<- paste("brk_",createRandomString(nrow(svcdat)*2,8),sep="")
svcdat.breaks <- data.table(c(svcdat$sample,svcdat$sample),
c(svcdat$chrom1,svcdat$chrom2),
c(svcdat$pos1,svcdat$pos2),
c(svcdat$strand1,svcdat$strand2),
c(svcdat$svclass,svcdat$svclass),
c(svcdat$uid,svcdat$uid),
uid)
colnames(svcdat.breaks) <- c("sample","chrom","pos","strand","svclass","svcuid","uid")
if(!is.null(low.cov)){
low.cov.df <- data.table(low.cov[,1:3])
colnames(low.cov.df) <- c("chrom","start","end")
svc_ranges <- with(svcdat.breaks, GRanges(chrom, IRanges(start=pos, end=pos)))
low.cov_ranges <- with(low.cov.df, GRanges(chrom, IRanges(start=start, end=end)))
low.cov_ranges = GenomicAlignments::findOverlaps(svc_ranges,low.cov_ranges)
svcdat.breaks <- svcdat.breaks[which(!svcdat.breaks$id %in% queryHits(low.cov_ranges)),]
}else{
svcdat.breaks <- svcdat.breaks
}
brk.burden.sub <- table(svcdat.breaks$sample)
brk.burden[names(brk.burden.sub)] <- brk.burden.sub
return(breaks(breaks=svcdat.breaks,
burden=brk.burden,
param=list(
datatype=svc@type,
low.cov=low.cov
)
)
)
}
#' Generating a genomic map based on a defined bin size and sliding window and counts the number of breakpoints mapped onto each bin. This function is used internally by svpluscnv::shattered.regions and svpluscnv::shattered.regions.cnv
#'
#' @param brk (breaks) An instance of the class 'breaks' obtained from CNV segmentation data (svpluscnv::cnv.breaks) or Structural Variant calls (svpluscnv::svc.breaks).
#' @param chr.lim (data.frame) 3 column table (chrom, begin, end) indicating the chromosome most distal coordinates with coverage. Also returned by the function svpluscnv::chromosome.limit.coords.
#' @param genome.v (hg19 or hg38) reference genome version to draw chromosome limits and centromeres
#' @param window.size (numeric) size in megabases of the genmome bin onto which breakpoints will be mapped
#' @param slide.size (numeric) size in megabases of the sliding genomic window; if slide.size < window.size the genomic bins will overlap
#' @param verbose (logical)
#' @return a matrix of samples (rows) and genomic bins (cols) qith the number of breakpoints mapped in heach cell
#' @keywords CNV, segmentation
#' @export
#' @examples
#'
#' cnv <- validate.cnv(segdat_lung_ccle)
#' brk <- cnv.breaks(cnv)
#' chr.lim <- chromosome.limit.coords(cnv)
#' break.density(brk,chr.lim)
break.density <- function(brk,
chr.lim=NULL,
genome.v = "hg19",
window.size = 10,
slide.size=2,
verbose=TRUE){
if(is.null(chr.lim)){
chr.lim<- d3gb.chr.lim(genome.v=genome.v)
}else{
stopifnot(ncol(chr.lim) == 3)
}
chr.begin <- chr.lim$begin
chr.end <- chr.lim$end
names(chr.begin) <- names(chr.end) <- chr.lim$chrom
# make sure both chr.lim and breaks have same chromosome names
seqnames <- intersect(chr.lim$chrom,brk@breaks$chr)
stopifnot(length(seqnames) > 0)
# a template vector to save breakpoint counts
templatevector <- brk@burden
templatevector[]<-0
WS <- window.size * 1e+6
SS <- slide.size * 1e+6
offset <- window.size/slide.size
chrlist <- chr.sort(chr.lim$chrom)
# count breaks for each chromosome for each fragment
fragment <- list()
for(chr in chrlist){
if(verbose) cat("\r",chr)
chr_breaks <- brk@breaks[which(brk@breaks$chrom == chr),]
frag <- seq(chr.begin[chr],chr.end[chr]+SS,SS)
for(i in (1+offset):length(frag)){
start <- frag[i - offset]
stop <- frag[i]
fragment[[paste(chr,start,stop)]] <- templatevector
break.position <- chr_breaks$pos
res_bp <- table(chr_breaks[intersect(which(break.position > start),which(break.position < stop)),"sample"])
fragment[[paste(chr,start,stop)]][names(res_bp)] <- res_bp
}
}
if(verbose) cat("Done!\n")
return( do.call(cbind,fragment))
}
#' Compare two different sets of breakpoints
#'
#' @param brk1 (S4) an object of class breaks as returned by `svc.breaks` or `cnv.breaks`
#' @param brk2 (S4) an object of class breaks as returned by `svc.breaks` or `cnv.breaks` to compare against brk1
#' @param maxgap (numeric) distance (base pairs) limit for breakpoints to be considered colocalized
#' @param verbose (logical)
#' @return an object containing co-localizing breakpoints from two input 'breaks'
#' @keywords CNV, SV, genomic breakpoints
#' @export
#' @examples
#'
#' ## Obtain breakpoints from segmentation data
#' cnv <- validate.cnv(segdat_lung_ccle)
#' brk1 <- cnv.breaks(cnv)
#'
#' ## Obtain breakpoints from SV calls data
#' sv <- validate.svc(svdat_lung_ccle)
#' brk2 <- svc.breaks(svc)
#'
#' common.brk <- match.breaks(brk1, brk2)
#'
#' ## average percentage of colocalizing breaks
#' restab <- data.frame(common.breaks$restab)[order(common.breaks$restab$total.brk2),]
#' m2 <- sprintf("%.1f",100*mean(restab$matched.brk2/restab$total.brk2))
#'
#' ## Plot the proportion of SV breakpoints that have colocalizing CNV breakpoints
#' barplot(rbind(restab$matched.brk2, restab$total.brk2 - restab$matched.brk2),
#' border=NA,las=2,xlab="",horiz=FALSE,cex.main=.7,cex.names=.4, names=rownames(restab))
#' legend("top",paste("SV breaks matched by CNV breaks\n","Average = ",m2,"%",sep=""),bty='n')
#' grid(ny=NULL,nx=NA)
match.breaks <- function(brk1,
brk2,
maxgap=100000,
verbose=FALSE,
plot=TRUE){
common_samples <- intersect(names(brk1@burden),names(brk2@burden))
stopifnot(length(common_samples) > 0, local = TRUE)
brk1_match <- brk2_match <- res <- list()
for(id in common_samples){
brk1_i <- brk1@breaks[which(brk1@breaks$sample == id),]
brk_ranges1 <- with(brk1_i, GRanges(chrom, IRanges(start=pos, end=pos)))
brk2_i <- brk2@breaks[which(brk2@breaks$sample == id),]
brk_ranges2 <- with(brk2_i, GRanges(chrom, IRanges(start=pos, end=pos)))
options(warn=-1)
seg_seg = GenomicAlignments::findOverlaps(brk_ranges1, brk_ranges2, maxgap=maxgap)
options(warn=0)
brk_match1 <- sort(unique(queryHits(seg_seg)))
brk_match2 <- sort(unique(subjectHits(seg_seg)))
res[[id]] <- data.table(id,length(brk_match1), nrow(brk1_i), length(brk_match2), nrow(brk2_i))
colnames(res[[id]]) <- c("sample","matched.brk1", "total.brk1", "matched.brk2", "total.brk2")
brk1_match[[id]] <- brk1_i[brk_match1,]
brk2_match[[id]] <- brk2_i[brk_match2,]
}
restab <- do.call(rbind,res)
if(plot == TRUE){
def.par <- par(no.readonly = TRUE)
par(mfrow=c(2,1))
restab <- restab[order(restab$total.brk2)]
m2 <- sprintf("%.1f",100*mean(na.omit(restab$matched.brk2/restab$total.brk2)))
barplot(rbind(restab$matched.brk2, restab$total.brk2 - restab$matched.brk2),
border=NA,las=2,xlab="",horiz=FALSE,cex.main=.7,cex.names=.4, names=restab$sample )
legend("top",paste(brk2@param$datatype," breaks matched by ",
brk1@param$datatype,
" breaks\n","Average = ",m2,"%",sep=""),bty='n')
grid(ny=NULL,nx=NA)
restab <- restab[order(restab$total.brk1)]
m2 <- sprintf("%.1f",100*mean(na.omit(restab$matched.brk1/restab$total.brk1)))
barplot(rbind(restab$matched.brk1, restab$total.brk1 - restab$matched.brk1),
border=NA,las=2,xlab="",horiz=FALSE,cex.main=.7,cex.names=.4, names=restab$sample)
legend("top",paste(brk1@param$datatype,
" breaks matched by ",brk2@param$datatype,
" breaks\n","Average = ",m2,"%",sep=""),bty='n')
grid(ny=NULL,nx=NA)
par(def.par)
}
return(list(
brk1_match = do.call(rbind,brk1_match),
brk2_match = do.call(rbind,brk2_match),
restab= restab))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.