suppressPackageStartupMessages({ library(signatureSearch); library(readr); library(dplyr); library(DT) })
This vignette shows the code and results for Gene Expression Signature Searches (GESS)
with the downstream Functional Enrichment Analysis (FEA) of the
The introduction of GESS and FEA as well as their
corresponding methods is available at this vignette
of the signatureSearch
package. Here, <gess_method>
is used as GESS method,
The <N_gess_drugs>
top ranking unique hits in the GESS table were then used
for FEA where three different annotation systems were used: GO Molecular
Function (GO MF), GO Biological Process (GO BP) and KEGG pathways.
wf_list <- runWF(drug="<drug>", refdb="<refdb>", gess_method="<gess_method>", fea_method="<fea_method>", N_gess_drugs=<N_gess_drugs>)
gess_tb <- suppressMessages(as.data.frame(fread("results/<gess_method>_res.xls"))) datatable(gess_tb[1:10, 1:15], colnames=c('No'=1), escape = FALSE, options=list(scrollX=TRUE, autoWidth=TRUE))
Cell_tb <- suppressMessages(as.data.frame(fread("results/ResultRankByCell.xls"))) datatable(Cell_tb[1:10,], colnames=c('No'=1), escape = FALSE, options=list(scrollX=TRUE, autoWidth=TRUE))
Expres_tb <- suppressMessages(as.data.frame(fread("results/GESExpressionLevel.xls"))) datatable(Expres_tb[1:10,], colnames=c('No'=1), escape = FALSE, options=list(scrollX=TRUE, autoWidth=TRUE))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.