boltzman_factor | R Documentation |
This function computes the Boltzmann's factors as function of
addimensional Gibb entropy S/k_B
(see gibb_entropy
) and the expected value \nu
of the generalized gamma (GG) distribution (with location parameter
\mu = 0
):
exp(-y^\alpha) * \alpha*y^(\alpha*\delta - 1)/(scale*\gamma(\delta))
(see (Wikipedia))
The expected value \nu
is given as:
\nu = \theta * \Gamma(\psi + 1/\alpha)/\Gamma(\psi)
(\\theta = scale
)
boltzman_factor(model = NULL, pars, ...)
## S4 method for signature 'missingORNULL'
boltzman_factor(model, pars, only.sum = TRUE)
## S4 method for signature 'cdfMODEL'
boltzman_factor(model, only.sum = TRUE)
## S4 method for signature 'cdfMODELlist'
boltzman_factor(model, only.sum = TRUE)
## S4 method for signature 'ProbDistrList'
boltzman_factor(model, only.sum = TRUE)
model |
An object from any of the classes created in MethylIT pipeline: cdfMODEL, cdfMODELlist, or ProbDistrList. If given, then the parameter values are taken from the model. |
pars |
Optional. A numerical vector containing the model parameter values in the given in order: alpha, scale, and delta. |
only.sum |
If only.sum = TRUE, then only the sum of Boltzmann's factors is returned. |
The Boltzmann's factor of Gibb entropy S/k_B
is
given as:
exp(-abs(S)/k_B)
While the Boltzmann's factor of \nu
is calculated as:
exp(-\eqn{\nu})
Boltzmann's factors exp(-abs(S)/k_B)
, exp(-\nu)
, and
exp(-abs(S)/k_B) + exp(-\nu)
, and the expected values \nu
and
the variance \sigma = \theta^2 Gamma(\psi + 2/\alpha)/\Gamma(\psi)
.
If only.sum = TRUE (default), the only the sum of Boltzmann's factors is
returned.
gibb_entropy
## Loading the probability distribution models
data(gof, "MethylIT")
## Gibb entropy in J * (K * mol)^-1)
gibb_entropy(gof)
## Shannon entropy
gibb_entropy(gof, R = 1, log.base = 2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.