evaluateModel: Evaluate a model using the Akaike information criterion (AIC)

.evaluateModelR Documentation

Evaluate a model using the Akaike information criterion (AIC)

Description

Evaluate a glm object using the Akaike information criterion (AIC)

Usage

.evaluateModel(model, test = c("Wald", "LRT"))

Arguments

model

glm object

test

A character string matching one of 'Wald' or 'LRT'. If test = 'Wald', then the p-value of the Wald test for the coefficient of the independent variable (treatment group) will be reported p-value. If test = 'LRT', then the p-value from a likelihood ratio test given by anova function from stats packages will be the reported p-value for the group comparison.

Value

AIC value


genomaths/MethylIT.utils documentation built on July 4, 2023, 12:05 a.m.