R/plotClusterSenator.R

Defines functions plotClusterSenator

Documented in plotClusterSenator

#' Plot trajectories based on clustering
#'
#' Draw trajectories and are colored based on their clusters with imputesenator
#'  object
#'
#' @param x imputesenator class object from \link{imputeSenatorToData} function.
#' @param ncluster When nclust = 'all', plots all trajectories and cluster
#'  together in a single plot. If it's an integer, it draws only trajectories
#'   that belong to that cluster. Finally, if it is a numeric vector, it draws
#'    trajectories corresponding to each cluster within a subplot.
#'
#' @return Plot clustered trayectories
#'
#' @details It draws trajectories where x axis is time data and y axis
#'  trayectory values.
#'
#' @examples
#'
#' data( tscR )
#' data <- tscR
#' time <- c( 1, 2, 3 )
#' senators <- imputeSenators( data, k = 100 )
#' senatorDist <- slopeDist( senators$senatorData, time )
#' sClust <- getClusters( senatorDist, k = 5 )
#' endCluster <- imputeSenatorToData( senators, sClust )
#' plotClusterSenator( endCluster, 'all' )


plotClusterSenator <- function(x, ncluster) {
    if (!is(x, "imputeSenator")) {
        stop("x must be imputeSenator class from imputeSenator function")
    }
    if (length(ncluster) == 1 && ncluster == "all") {
        clusteres <- as.numeric(gsub("end", "", x@endCluster))
        colors <- tscR:::fcolor(clusteres)
        matplot(t(x@data), lty = 1, type = "l", col = colors,
            ylab = "Trajectories", xlab = "Time")
    }
    if (length(ncluster) == 1 && ncluster != "all") {
        clusteres <- as.numeric(gsub("end", "", x@endCluster))
        posCluster <- which(clusteres %in% ncluster)
        posCluster2 <- clusteres[posCluster]
        colors <- "red"
        matplot(t(x@data[clusteres == ncluster, ]),
            lty = 1, type = "l", col = colors, ylab = "Trajectories",
            xlab = "Time")
    }
    if (is.numeric(ncluster) & length(ncluster) > 1) {
        n <- ceiling(length(ncluster)/2)
        clusteres <- as.numeric(gsub("end", "", x@endCluster))
        posCluster <- which(clusteres %in% ncluster)
        posCluster2 <- clusteres[posCluster]
        colors <- tscR:::fcolor(seq_len(length(ncluster)))
        par(mfrow = c(n, 2))
        c = 1
        for (i in ncluster) {
            matplot(t(x@data[clusteres == i, ]), lty = 1,
                type = "l", col = colors[c], ylab = "Trajectories",
                xlab = "Time")
            c = c + 1
        }
        par(mfrow = c(1, 1))
    }
}
fpsanz/tscR documentation built on July 17, 2020, 2:20 a.m.