R/calculateFitnessScore.R

Defines functions calculateFitnessScore

Documented in calculateFitnessScore

#' Calculate fitness scores.
#' 
#' Using sequence counts before and after selection, calculate fitness scores 
#' as described by Diss and Lehner (2018).
#' 
#' @param se SummarizedExperiment object as returned by 
#'     \code{\link{summarizeExperiment}}.
#' @param pairingCol Name of column in \code{colData(se)} with 
#'     replicate/pairing information. Samples with the same value in this 
#'     column will be paired.
#' @param ODCols Name(s) of column(s) in \code{colData(se)} with OD values 
#'     (numeric), used to normalize for different numbers of cells.
#' @param comparison 3-element character vector of the form 
#'     \code{(column, numerator, denominator)}. \code{column} is the name of 
#'     the column in \code{colData(se)} with experimental conditions. 
#'     \code{numerator} and \code{denominator} define the comparison, 
#'     e.g. \code{c("cond", "output", "input")} will look in the 
#'     \code{"cond"} column and calculate fitness for the ratio of 
#'     \code{"output"} over \code{"input"} counts.
#' @param WTrows Vector of row names that will be used as the reference when
#'     calculating fitness scores. If more than one value is provided, the 
#'     average of the corresponding fitness scores is used as a reference. 
#'     If NULL, no division by WT scores will be done.
#' @param selAssay Assay to select from \code{se} for the analysis.
#'   
#' @return A numeric vector with fitness scores.
#' 
#' @author Michael Stadler and Charlotte Soneson
#' 
#' @references "The genetic landscape of a physical interaction."
#'     Diss G and Lehner B. Elife. 2018;7:e32472. doi: 10.7554/eLife.32472.
#' 
#' @importFrom methods is
#' @importFrom SummarizedExperiment colData assay
#' @importFrom Matrix colSums
#' 
#' @export
#' 
#' @examples 
#' se <- readRDS(system.file("extdata", "GSE102901_cis_se.rds", 
#'                           package = "mutscan"))
#' ## Check that the wildtype sequence is present in the data
#' stopifnot("f.0.WT" %in% rownames(se))
#' ## Calculate PPI scores as defined in Diss & Lehner (2018)
#' ppis <- calculateFitnessScore(
#'     se = se, pairingCol = "Replicate", 
#'     ODCols = c("OD1", "OD2"),
#'     comparison = c("Condition", "cis_output", "cis_input"),
#'     WTrows = "f.0.WT")
#' ## Matrix with PPI scores for each replicate
#' head(ppis)
#' 
calculateFitnessScore <- function(se, pairingCol, ODCols, comparison, WTrows,
                                  selAssay = "counts") {
    ## ------------------------------------------------------------------------
    ## pre-flight checks
    ## ------------------------------------------------------------------------
    .assertVector(x = se, type = "SummarizedExperiment")
    
    ## pairingCol is in colData(se)
    .assertScalar(x = pairingCol, type = "character", 
                  validValues = colnames(SummarizedExperiment::colData(se)))
    
    ## ODCols are all in colData(se) and contain numeric values
    .assertVector(x = ODCols, type = "character", rngLen = c(1, Inf),
                  validValues = colnames(SummarizedExperiment::colData(se)))
    for (odc in ODCols) {
        .assertVector(x = SummarizedExperiment::colData(se)[[odc]], 
                      type = "numeric")
    }
    
    ## comparison is length(3)-character with column and values in colData(se)
    .assertVector(x = comparison, type = "character", len = 3)
    .assertScalar(x = comparison[1], type = "character", 
                  validValues = colnames(SummarizedExperiment::colData(se)))
    .assertVector(x = comparison[2:3], type = "character", 
                  validValues = SummarizedExperiment::colData(se)[[comparison[1]]])
    
    ## there is exactly one observation per pairing and condition
    if (any(table(colData(se)[colData(se)[, comparison[1]] %in% 
                              comparison[2:3], pairingCol],
                  colData(se)[colData(se)[, comparison[1]] %in% 
                              comparison[2:3], comparison[1]]) != 1)) {
        stop("There must be exactly one sample for every ", 
             "replicate-condition combination ",
             "defined by 'pairingCol' and 'comparison'")
    }
    
    ## WTrows exist in the SE
    .assertVector(x = WTrows, type = "character", validValues = rownames(se), 
                  allowNULL = TRUE)
    
    ## ------------------------------------------------------------------------
    ## subset se and reorder samples by shared replicates
    ## ------------------------------------------------------------------------
    se_numerator <- se[, colData(se)[, comparison[1]] == comparison[2]]
    se_denominator <- se[, colData(se)[, comparison[1]] == comparison[3]]
    
    shared_repl <- intersect(colData(se_numerator)[, pairingCol], 
                             colData(se_denominator)[, pairingCol])
    se_numerator <- se_numerator[, match(shared_repl, 
                                         colData(se_numerator)[, pairingCol])]
    se_denominator <- se_denominator[, match(shared_repl, 
                                             colData(se_denominator)[, pairingCol])]
    
    ## ------------------------------------------------------------------------
    ## calculate normalized counts (n_i)
    ## ------------------------------------------------------------------------
    norm_counts_numerator <- sweep(
        as.matrix(assay(se_numerator, selAssay)), MARGIN = 2, 
        STATS = apply(colData(se_numerator)[, ODCols, drop = FALSE], MARGIN = 1, prod) /
            Matrix::colSums(assay(se_numerator, selAssay)), 
        FUN = "*")
    norm_counts_denominator <- sweep(
        as.matrix(assay(se_denominator, selAssay)), MARGIN = 2, 
        STATS = apply(colData(se_denominator)[, ODCols, drop = FALSE], MARGIN = 1, prod) /
            Matrix::colSums(assay(se_denominator, selAssay)), 
        FUN = "*")
    n <- log2(norm_counts_numerator/norm_counts_denominator)
    n[!is.finite(n)] <- NA
    colnames(n) <- paste0(comparison[2], "_vs_", comparison[3], "_repl", shared_repl)
    
    
    ## ------------------------------------------------------------------------
    ## calculate fitness = n_i / n_WT
    ## ------------------------------------------------------------------------
    if (is.null(WTrows)) {
        nWT <- rep(1, ncol(n))
    } else {
        nWT <- colMeans(n[WTrows, , drop = FALSE])
    }
    fitness <- sweep(n, MARGIN = 2, STATS = nWT, FUN = "/")
    return(fitness)
}
fmicompbio/mutscan documentation built on Oct. 24, 2024, 2:41 p.m.