R/treeScore.R

Defines functions treeScore

Documented in treeScore

#' Generate weighted tree score accounting for the family effect
#'
#' \code{treeScore} takes the tree structure into account when calculating the
#' score for an internal node. If an internal node A has two children B and C,
#' \code{(A->B, A->C)}, the new score at node A would be calculated as the
#' weighted mean of the scores in the whole family (A, B and C). The weights are
#' based on the number of descendant leaves. For example, if the node B has 2
#' descendant leaves, and C has 3 descendant leaves, then A would have 5. The
#' calculation would be \eqn{(Score\_A * 5 + Score\_B * 2 +Score\_C * 3)/10}.
#' The generation starts from the leaves and the new generated scores are used
#' to update those in higher level of the tree until the root is reached.
#'
#' @author Ruizhu Huang
#' @export
#'
#' @param tree A \code{phylo} object.
#' @param score_data A data frame that includes at least two columns. One column
#'     stores the number of the node, and the other stores the original score of
#'     the corresponding node.
#' @param node_column The name of the column of \code{score_data} that contains
#'     the numbers of the nodes.
#' @param score_column The name of the column of \code{score_data} that
#'     contains the original scores of the nodes.
#' @param new_score The name of the column that stores the generated score.
#'
#' @returns A \code{data.frame} similar to \code{score_data}, but with an
#' extra column (named \code{new_score}) containing the weighted scores.
#'
#' @importFrom TreeSummarizedExperiment printNode matTree findDescendant
#'
#' @examples
#' suppressPackageStartupMessages({
#'     library(TreeSummarizedExperiment)
#'     library(ggtree)
#'     library(dplyr)
#' })
#'
#' ## tree
#' data(tinyTree)
#' ggtree(tinyTree, branch.length = "none") +
#'     geom_text2(aes(label = node))
#'
#' ## score
#' exScore <- data.frame(nodeNum = seq_len(19), score = (seq_len(19))/10)
#'
#' ## Calculate new score based on the tree
#' newScore <- treeScore(tree = tinyTree, score_data = exScore,
#'                       node_column = "nodeNum",
#'                       score_column = "score",
#'                       new_score = "wScore")
#'
#' ## Visualize the result
#' ## The original scores are in black texts and the new ones in blue
#' df <- newScore |>
#'       rename(node = nodeNum) |>
#'       mutate(score = round(score, 3),
#'              wScore = round(wScore, 3))
#' ggtree(tinyTree) %<+%
#'    df +
#'    geom_text2(aes(label = score), hjust = -0.05) +
#'    geom_text2(aes(label = wScore, hjust = -1.2),
#'    color = "blue")
#'
treeScore <- function(tree, score_data, node_column, score_column, new_score) {

    ## Check arguments
    ## -------------------------------------------------------------------------
    .assertVector(x = tree, type = "phylo")
    .assertVector(x = score_data, type = "data.frame")
    .assertScalar(x = node_column, type = "character",
                  validValues = colnames(score_data))
    .assertScalar(x = score_column, type = "character",
                  validValues = colnames(score_data))
    .assertScalar(x = new_score, type = "character")

    ## Get all node numbers, tip numbers, and numbers of internal nodes
    ## -------------------------------------------------------------------------
    df <- TreeSummarizedExperiment::printNode(tree, type = "all")
    nodeA <- sort(df$nodeNum)
    tip <- sort(df$nodeNum[df$isLeaf])
    nodeI <- sort(setdiff(nodeA, tip))

    if (!all.equal(nodeA, c(tip, nodeI))) {
        ## Will only end up here if some internal node has a lower node
        ## number than some tip
        warning("All leaves should have lower node number than internal nodes.")
    }

    ## Create a list with direct children of each node (include the node itself)
    ## -------------------------------------------------------------------------
    chl <- findChild(tree = tree, node = nodeI)
    desd <- lapply(seq_along(nodeI), FUN = function(x) {
        c(nodeI[x], chl[[x]])
    })
    desdA <- c(as.list(tip), desd)

    ## Count the number of descendant leaves for each node
    ## -------------------------------------------------------------------------
    leafA <- TreeSummarizedExperiment::findDescendant(
        tree = tree, node = nodeA, only.leaf = TRUE, self.include = TRUE)
    leafDF <- data.frame(node = nodeA,
                         num = unlist(lapply(leafA, length)))
    leafA <- lapply(desdA, FUN = function(x) {
        leafDF$num[x]
    })

    ## Calculate scores at nodes: leaf nodes U = S
    ## -------------------------------------------------------------------------
    mat <- TreeSummarizedExperiment::matTree(tree = tree)
    tempData <- score_data
    tempData[new_score] <- tempData[, score_column]

    ## Scores at internal nodes
    tempMat <- mat[, -1]
    for (i in seq_len(ncol(tempMat))) {
        mat.i <- tempMat[, i]
        mat.o <- tempMat[, -seq_len(i)]
        node.i <- setdiff(as.vector(mat.i), as.vector(mat.o))
        node.i <- node.i[!is.na(node.i)]

        ## Take the weighted average score of the whole family
        ## (a-b; a-c) => scoreNA = wmean(scoreA, scoreB, scoreC)
        score.i <- lapply(node.i, FUN = function(x) {
            desd.i <- desdA[[x]]
            nLeaf.i <- leafA[[x]]

            rr.i <- match(desd.i, tempData[, node_column])
            sc.i <- tempData[rr.i, new_score]
            isNa <- is.na(sc.i)
            sc.i <- sc.i[!isNa]
            lf.i <- nLeaf.i[!isNa]
            ot.i <- sum(sc.i * lf.i) / sum(lf.i)
            return(ot.i)
        })

        ## Remove nodes without scores
        na.i <- unlist(lapply(score.i, is.na))
        score.ii <- score.i[!na.i]
        node.ii <- node.i[!na.i]

        row.i <- match(node.ii, tempData[, node_column])

        # NA might occur in row.i
        ri <- !is.na(row.i)
        row.i <- row.i[ri]
        tempData[row.i, new_score] <- unlist(score.ii)[ri]
    }

    return(tempData)
}
fionarhuang/treeclimbR documentation built on Jan. 1, 2025, 9:02 p.m.