run_quantiseq | R Documentation |
Use quanTIseq to deconvolute a gene expression matrix.
run_quantiseq(
expression_data,
signature_matrix = "TIL10",
is_arraydata = FALSE,
is_tumordata = FALSE,
scale_mRNA = TRUE,
method = "lsei",
column = "gene_symbol",
rm_genes = NULL,
return_se = is(expression_data, "SummarizedExperiment")
)
expression_data |
The gene expression information, containing the TPM values for the measured features. Can be provided as
|
signature_matrix |
Character string, specifying the name of the signature matrix.
At the moment, only the original |
is_arraydata |
Logical value. Should be set to TRUE if the expression data
are originating from microarray data. For RNA-seq data, this has to be FALSE
(default value). If set to TRUE, the |
is_tumordata |
Logical value. Should be set to TRUE if the expression data is from tumor samples. Default: FALSE (e.g. for RNA-seq from blood samples) |
scale_mRNA |
Logical value. If set to FALSE, it disables the correction of cell-type-specific mRNA content bias. Default: TRUE |
method |
Character string, defining the deconvolution method to be used:
|
column |
Character, specifies which column in the |
rm_genes |
Character vector, specifying which genes have to be excluded from the deconvolution analysis. It can be provided as
|
return_se |
Logical value, controls the format of how the quantification
is returned. If providing a |
The values contained in the expression_data
need to be provided as
TPM values, as this is the format also used to store the TIL10
signature, upon
which quanTIseq builds to perform the immune cell type deconvolution.
Expression data should not be provided in logarithmic scale.
If providing the expression_data
as a SummarizedExperiment
/DESeqDataSet
object, it might be beneficial that this has been created via tximport
-
if this is the case, the assay named "abundance" will be automatically
created upon importing the transcript quantification results.
A data.frame containing the quantifications of the cell type proportions,
or alternatively, if providing expression_data
as SummarizedExperiment
and
setting return_se
to TRUE, a SummarizedExperiment
with the quantifications
included by expanding the colData
slot of the original object
F. Finotello, C. Mayer, C. Plattner, G. Laschober, D. Rieder, H. Hackl, A. Krogsdam, Z. Loncova, W. Posch, D. Wilflingseder, S. Sopper, M. Jsselsteijn, T. P. Brouwer, D. Johnsons, Y. Xu, Y. Wang, M. E. Sanders, M. V. Estrada, P. Ericsson-Gonzalez, P. Charoentong, J. Balko, N. F. d. C. C. de Miranda, Z. Trajanoski. "Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data". Genome Medicine 2019;11(1):34. doi: 10.1186/s13073-019-0638-6.
C. Plattner, F. Finotello, D. Rieder. "Chapter Ten - Deconvoluting tumor-infiltrating immune cells from RNA-seq data using quanTIseq". Methods in Enzymology, 2020. doi: 10.1016/bs.mie.2019.05.056.
data(dataset_racle)
dim(dataset_racle$expr_mat)
res_quantiseq_run <- quantiseqr::run_quantiseq(
expression_data = dataset_racle$expr_mat,
signature_matrix = "TIL10",
is_arraydata = FALSE,
is_tumordata = TRUE,
scale_mRNA = TRUE
)
# using a SummarizedExperiment object
library("SummarizedExperiment")
se_racle <- SummarizedExperiment(
assays = List(
abundance = dataset_racle$expr_mat
),
colData = DataFrame(
SampleName = colnames(dataset_racle$expr_mat)
)
)
res_run_SE <- quantiseqr::run_quantiseq(
expression_data = se_racle,
signature_matrix = "TIL10",
is_arraydata = FALSE,
is_tumordata = TRUE,
scale_mRNA = TRUE
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.