#' Calculate a set of kinematics parameter from a \code{TrajectorySet} object, or a single parameter, or from a single trajectory (all possible combinations)
#'
#' The computed set of parameters include \code{delta.x}, \code{delta.t} and \code{delta.v}
#' (displacements and instantaneous velocity), \code{totalTime}, \code{totalDistance},
#' \code{distStartToEnd}, \code{curvilinearVelocity}, \code{straightLineVelocity} and
#' \code{linearityForwardProgression}, Mean Squared Displacement, velocity
#' autocorrelation, and more. If a single trajectory is specified, the computation is
#' performed for that trajectory alone. If a parameter is specified, only that
#' parameter is reported, either for one or all trajectories
#'
#' @param trajectoryset A \code{TrajectorySet} object
#' @param trajectoryIDs The ID of a single trajectory
#' @param acquisitionFrequency The frame rate of acquisition for the images, in
#' milliseconds
#' @param scala The value of micro(?)meters to which each single pixel
#' corresponds
#' @param feature Character string, the name of the feature to be computed
#'
#' @return A \code{KinematicsFeaturesSet} object, or a \code{KinematicsFeatures} object,
#' or an atomic value, or a list(eventually coerced to a vector)
#'
#' @examples
#' data("candidate.platelets")
#' platelets.trajectories <- trajectories(candidate.platelets)
#' # for all trajectories, all features
#' alltrajs.features <- kinematics(platelets.trajectories)
#' # for one trajectory, all features
#' traj11features <- kinematics(platelets.trajectories,trajectoryIDs = 11)
#' # for all trajectories, one feature
#' alltrajs.curvVel <- kinematics(platelets.trajectories,feature = "curvilinearVelocity")
#'
#' @export
#' @author Federico Marini, \email{marinif@@uni-mainz.de}, 2014
kinematics <- function(trajectoryset,
trajectoryIDs=NULL,
acquisitionFrequency=30, # in milliseconds
scala=50, # 1 pixel is ... micrometer
feature=NULL)
{
# first check whether the user wants to know what features are available to compute
if(!is.null(feature)) {
if (feature=="?") {
cat("Available features to compute are listed here below.
Please select one among delta.x, delta.t, delta.v, totalTime,
totalDistance, distStartToEnd, curvilinearVelocity,
straightLineVelocity, linearityForwardProgression, trajMSD,
velocityAutoCorr, instAngle, directChange or dirAutoCorr")
return(NULL)
}
}
# compute all, for one or all trajectories
if(!is.null(trajectoryIDs)) # then operate on a single trajectory
{
kineSet.out <- extractKinematics.traj(trajectoryset,trajectoryIDs,acquisitionFrequency=acquisitionFrequency,scala=scala) # returns a KinematicsFeatureSet object
# then eventually just report the desired kinematic feature
if(is.null(feature))
{
return(kineSet.out)
} else {
kineFeat.out <- kineSet.out[[feature]]
if(is.null(kineFeat.out)) stop("You selected a feature whose name is not available in the set (or was not computed because the trajectory was too short).
Please select one among delta.x, delta.t, delta.v, totalTime, totalDistance, distStartToEnd, curvilinearVelocity, straightLineVelocity,
linearityForwardProgression, trajMSD or velocityAutoCorr")
return(kineFeat.out)
}
} else { # it will be done on all trajectories of the trajectoryset
tmp <- list()
for(i in 1:length(trajectoryset))
{
kineOne <- extractKinematics.traj(trajectoryset,i,acquisitionFrequency=acquisitionFrequency,scala=scala) #, acquisitionFrequency=30, # in milliseconds, scala=50
tmp[[length(tmp) + 1]] <- kineOne
}
# additional class attribute?
kineSetList.out <- new("KinematicsFeaturesSet",tmp)
# then eventually just report the desired kinematic feature
if(is.null(feature))
{
return(kineSetList.out)
} else {
kineFeatList.out <- lapply(kineSetList.out,function(arg){arg[[feature]]})
if(all(unlist(lapply(kineFeatList.out,function(arg){is.null(arg)})))) stop("You selected a feature whose name is not available in the set (or was not computed because
the trajectory was too short). Please select one among delta.x, delta.t, delta.v, totalTime,
totalDistance, distStartToEnd, curvilinearVelocity, straightLineVelocity,
linearityForwardProgression, trajMSD or velocityAutoCorr")
if(feature %in% c("totalTime","totalDistance","distStartToEnd","curvilinearVelocity","straightLineVelocity","linearityForwardProgression"))
{
kineFeatList.out <- unlist(kineFeatList.out)
}
return(kineFeatList.out)
}
}
}
#' Calculate a set of kinematics parameters from a single trajectory
#'
#' The computed set of parameters include \code{delta.x}, \code{delta.t} and \code{delta.v}
#' (displacements and instantaneous velocity), \code{totalTime}, \code{totalDistance},
#' \code{distStartToEnd}, \code{curvilinearVelocity}, \code{straightLineVelocity} and
#' \code{linearityForwardProgression}, Mean Squared Displacement, velocity
#' autocorrelation, and more
#'
#' @param trajectoryset A \code{TrajectorySet} object
#' @param trajectoryID The ID of a single trajectory
#' @param acquisitionFrequency The frame rate of acquisition for the images, in
#' milliseconds
#' @param scala The value of micro(?)meters to which each single pixel
#' corresponds
#'
#' @return A \code{KinematicsFeatures} object
#'
#' @author Federico Marini, \email{marinif@@uni-mainz.de}, 2014
extractKinematics.traj <- function(trajectoryset,
trajectoryID,
acquisitionFrequency=30, # in milliseconds
scala=50 # 1 pixel is ... micrometer
)
{
singleTraj <- trajectoryset[[trajectoryID]]$trajectory
# throw a warning/message/error if the traj is below 3 points
if(nrow(singleTraj) < 4)
{
warning(paste0("The trajectory with ID ",trajectoryID," had 3 or less points, no features were computed."))
out <- list(delta.x=NA,
delta.t=NA,
delta.v=NA,
totalTime=NA,
totalDistance=NA,
distStartToEnd=NA,
curvilinearVelocity=NA,
straightLineVelocity=NA,
linearityForwardProgression=NA,
trajMSD=NA,
velocityAutoCorr=NA,
instAngle=NA,
directChange=NA,
dirAutoCorr=NA,
paramsNotComputed=TRUE
)
# class(out) <- c("KinematicsFeatureSet",class(out))
y <- new("KinematicsFeatures",out)
return(y)
}
sx <- singleTraj$xCoord
sy <- singleTraj$yCoord
d1x <- diff(sx)
d1y <- diff(sy)
polarCoord <- toPolarCoords(d1x,d1y) # if needed at all
delta.x <- sqrt(d1x^2 + d1y^2)
delta.t <- diff(singleTraj$frame) * acquisitionFrequency # should account for gaps
totalTime <- sum(delta.t)
totalDistance <- sum(delta.x)
delta.v <- delta.x/delta.t # * scala # to convert from pixel/t to the actual measurement unit
curvilinearVelocity <- totalDistance/totalTime # = mean(delta.v) if no gaps are there
distStartToEnd <- sqrt( (sx[length(sx)] - sx[1])^2 + (sy[length(sy)] - sy[1])^2 )
straightLineVelocity <- distStartToEnd / totalTime
linearityForwardProgression <- straightLineVelocity / curvilinearVelocity
# msd only to compute where no gaps are present?
trajMSD <- computeMSD(sx,sy,until=floor(nrow(singleTraj)/4))
velocityAutoCorr <- acf(delta.v,plot=FALSE)
#
# directionality of the traj, with angles
instAngle <- atan2(d1y,d1x)
directChange <- diff(instAngle)
dirAutoCorr <- acf(directChange,plot=FALSE)
out <- list(delta.x=delta.x,
delta.t=delta.t,
delta.v=delta.v,
totalTime=totalTime,
totalDistance=totalDistance,
distStartToEnd=distStartToEnd,
curvilinearVelocity=curvilinearVelocity,
straightLineVelocity=straightLineVelocity,
linearityForwardProgression=linearityForwardProgression,
trajMSD=trajMSD,
velocityAutoCorr=velocityAutoCorr,
instAngle=instAngle,
directChange=directChange,
dirAutoCorr=dirAutoCorr,
paramsNotComputed=FALSE
)
# class(out) <- c("KinematicsFeatureSet",class(out))
y <- new("KinematicsFeatures",out)
return(y)
}
#' Calculates the Mean Squared Displacement for a trajectory
#'
#' @param sx x axis positions along the trajectory
#' @param sy y axis positions along the trajectory
#' @param until how many points should be included in the Mean Squared Displacement curve
#'
#' @return A numeric vector containing the values of the MSD
#'
#' @author Federico Marini, \email{marinif@@uni-mainz.de}, 2014
computeMSD <- function(sx,sy,until=4)
{
msd.t <- rep(0,until)
for (dt in 1:until)
{
displacement.x <- as.vector(na.omit(sx[(1+dt):length(sx)]) - sx[1:(length(sx)-dt)])
displacement.y <- as.vector(na.omit(sy[(1+dt):length(sy)]) - sy[1:(length(sy)-dt)])
sqrdispl <- (displacement.x^2 + displacement.y^2)
msd.t[dt] <- mean(sqrdispl)
}
return(msd.t)
}
#' Converts cartesian coordinates to polar coordinates
#'
#' Conversion from (x,y) to (radius,theta)
#'
#' @param x x coordinate
#' @param y y coordinate
#'
#' @return A list containing Theta and Radius, as in polar coordinates
#'
#' @author Federico Marini, \email{marinif@@uni-mainz.de}, 2014
toPolarCoords <- function(x,y)
{
Theta <- atan2(y,x)
Radius <- sqrt(x^2 + y^2)
return(list(Theta=Theta,Radius=Radius))
}
#' Converts polar coordinates to cartesian coordinates
#'
#' Conversion from (radius,theta) to (x,y)
#'
#' @param Theta The Theta angle
#' @param Radius The radius value in polar coordinates
#'
#' @return A list containing Theta and Radius, as in polar coordinates
#'
#' @author Federico Marini, \email{marinif@@uni-mainz.de}, 2014
toCartesianCoords <- function(Theta,Radius)
{
xCoord <- Radius * cos(Theta)
yCoord <- Radius * sin(Theta)
return(list(x=xCoord,y=yCoord))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.