newFit | R Documentation |
Given an object with the data, it fits a nb model.
newFit(Y, ...) ## S4 method for signature 'SummarizedExperiment' newFit( Y, X, V, K = 2, which_assay, commondispersion = TRUE, verbose = FALSE, maxiter_optimize = 100, stop_epsilon = 1e-04, children = 1, random_init = FALSE, random_start = FALSE, n_gene_disp = NULL, n_cell_par = NULL, n_gene_par = NULL, ... ) ## S4 method for signature 'matrix' newFit( Y, X, V, K = 2, commondispersion = TRUE, verbose = FALSE, maxiter_optimize = 100, stop_epsilon = 1e-04, children = 1, random_init = FALSE, random_start = FALSE, n_gene_disp = NULL, n_cell_par = NULL, n_gene_par = NULL, ... ) ## S4 method for signature 'DelayedMatrix' newFit( Y, X, V, K = 2, commondispersion = TRUE, verbose = FALSE, maxiter_optimize = 100, stop_epsilon = 1e-04, children = 1, random_init = FALSE, random_start = FALSE, n_gene_disp = NULL, n_cell_par = NULL, n_gene_par = NULL, ... ) ## S4 method for signature 'dgCMatrix' newFit(Y, ...)
Y |
The matrix with the data |
... |
Additional parameters to describe the model, see
|
X |
The design matrix containing sample-level covariates, one sample per row. If missing, X will contain only an intercept. |
V |
The design matrix containing gene-level covariates, one gene per row. If missing, V will contain only an intercept. |
K |
integer. Number of latent factors(default 2). |
which_assay |
numeric or character. Which assay of Y to use. If missing, if 'assayNames(Y)' contains "counts" then that is used. Otherwise, the first assay is used. |
commondispersion |
Whether or not a single dispersion for all features is estimated (default TRUE). |
verbose |
Print helpful messages(default FALSE). |
maxiter_optimize |
maximum number of iterations for the optimization step (default 100). |
stop_epsilon |
stopping criterion in the optimization step, when the relative gain in likelihood is below epsilon (default 0.0001). |
children |
number of cores of the used cluster(default 1) |
random_init |
if TRUE no initializations is done(default FALSE) |
random_start |
if TRUE the setup of parameters is a random samplig(default FALSE) |
n_gene_disp |
number of genes used in mini-batch dispersion estimation approach(default NULL > all genes are used) |
n_cell_par |
number of cells used in mini-batch cell's related parameters estimation approach(default NULL > all cells are used) |
n_gene_par |
number of genes used in mini-batch gene's related parameters estimation approach(default NULL > all genes are used) |
By default, i.e., if no arguments other than Y
are passed,
the model is fitted with an intercept for the regression across-samples and
one intercept for the regression across genes.
If Y is a Summarized experiment, the function uses the assay named "counts", if any, or the first assay.
Currently, if Y is a sparseMatrix, this calls the newFit method on as.matrix(Y)
An object of class newmodel
that has been fitted by penalized
maximum likelihood on the data.
SummarizedExperiment
: Y is a
SummarizedExperiment
.
matrix
: Y is a matrix of counts (genes in rows).
DelayedMatrix
: Y is a DeleyedMatrix of counts (genes in rows).
dgCMatrix
: Y is a sparse matrix of counts (genes in rows).
model.matrix
.
se <- SummarizedExperiment(matrix(rpois(60, lambda=5), nrow=10, ncol=6), colData = data.frame(bio = gl(2, 3))) m <- newFit(se, X=model.matrix(~bio, data=colData(se))) bio <- gl(2, 3) m <- newFit(matrix(rpois(60, lambda=5), nrow=10, ncol=6), X=model.matrix(~bio))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.