knitr::opts_chunk$set(echo = params$printcode)
This html document contains what parameters values were selected on the IDEP interface. It also includes the plots generated from those selections.
for (i in 1:length(params)) { # exclude loaded data & sample info if (names(params)[i] != "sample_info" && names(params)[i] != "loaded_data") { cat(paste0(names(params)[i], ": ", params[[i]], "\n")) } }
# devtools::load_all() library(idepGolem)
r switch(params$data_file_format, "1" = "Read Counts data", "2" = "Normalized expression values", "3" = "Log Fold Change and corrected P values data")
were analyzed using iDEP v1.0 [Citation]. r switch(params$data_file_format, "1" = paste0("The data was first filtered to remove reads below ", params$min_counts," CPM in at least ", params$n_min_samples_count, " sample(s). Then the data was transformed with ", switch(params$counts_transform, "1" = paste0("EdgeR using a pseudocount of ", params$counts_log_start), "2" = "VST: Variance Stabilizing Transformation", "3" = "Regularized log"), ". Missing values were imputed using ", params$missing_value, "."), "2" = paste0("The data was ",switch(toString(params$log_transform_fpkm), "FALSE" = "not log transformed.", "TRUE" = paste0(" log transformed with a psuedocount of ", params$log_start_fpkm, ".")), " Then it was filtered to only keep genes above level ", params$low_filter_fpkm, " in at least ", params$n_min_samples_fpkm, " sample(s). Missing values were imputed using ", params$missing_value, "."))
processed_data <- idepGolem::pre_process( data = params$loaded_data, missing_value = params$missing_value, data_file_format = params$data_file_format, low_filter_fpkm = params$low_filter_fpkm, n_min_samples_fpkm = params$n_min_samples_fpkm, log_transform_fpkm = params$log_transform_fpkm, log_start_fpkm = params$log_start_fpkm, min_counts = params$min_counts, n_min_samples_count = params$n_min_samples_count, counts_transform = params$counts_transform, counts_log_start = params$counts_log_start, no_fdr = params$no_fdr )
if (params$data_file_format == 1) { idepGolem::total_counts_ggplot( counts_data = processed_data$raw_counts, sample_info = params$sample_info, type = "RAW", plots_color_select = params$plots_color_select ) }
idepGolem::eda_scatter( processed_data = processed_data$data, plot_xaxis = params$scatter_x, plot_yaxis = params$scatter_y )
idepGolem::eda_boxplot( processed_data = processed_data$data, sample_info = params$sample_info, plots_color_select = params$plots_color_select )
idepGolem::eda_density( processed_data = processed_data$data, sample_info = params$sample_info, plots_color_select = params$plots_color_select )
idepGolem::mean_sd_plot( processed_data = processed_data$data, heat_cols = params$sd_color, rank = params$rank )
idepGolem::gene_counts_ggplot( counts_data = params$loaded_data, sample_info = params$sample_info, type = "Raw", all_gene_info = params$all_gene_info, plots_color_select = params$plots_color_select )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.