Automatically generated using iDEP at r format(Sys.time(), "%H:%M, %Y-%m-%d")
.
knitr::opts_chunk$set(echo = params$printcode) # , include = FALSE, eval = FALSE)
This document contains what parameters values were selected on the IDEP interface. It also includes the plots generated from those selections.
r params$descr
The comparison selected was r params$select_contrast
using r params$go
genesets. r params$n_pathway_show
pathways with between r params$min_set_size
and r params$max_set_size
genes were included. Absolute fold values were r ifelse(params$absolute_fold, 'not', '')
used. Pathways were found using the r switch(as.character(params$pathway_method), "1" = "GAGE", "2" = "PGSEA", "3" = "GSEA (Pre-Ranked)", "4" = "PGSEA with all samples", "5" = "ReactomePA" )
method. Pathway p values cutoff is set to r params$pathway_p_val_cutoff
. Genes with FDR (DEG) greater than r params$gene_p_val_cutoff
were removed.
# exclude long parameter we won't print excluded_params <- c( "sample_info", "loaded_data", "pre_processed", "deg", "idep_data", "converted", "limma", "gene_sets", "pathway_list_data", "all_gene_names", "all_gene_info", "selected_pathway_data", 'descr' ) for (i in 1:length(params)) { if (!(names(params)[i] %in% excluded_params)) { cat(paste0(names(params)[i], ": ", params[[i]], "\n")) } }
library(kableExtra) library(dplyr) library(idepGolem)
gene_sets <- read_gene_sets( converted = params$converted, all_gene_names = params$all_gene_names, go = params$go, select_org = params$select_org, idep_data = params$idep_data, my_range = params$my_range ) gene_sets$gene_lists[1:2]
r params$select_contrast
if (params$pathway_method == 1) { gage <- idepGolem::gage_data( select_go = params$go, select_contrast = params$select_contrast, min_set_size = params$min_set_size, max_set_size = params$max_set_size, limma = params$limma, gene_p_val_cutoff = params$gene_p_val_cutoff, gene_sets = params$gene_sets, absolute_fold = params$absolute_fold, pathway_p_val_cutoff = params$pathway_p_val_cutoff, n_pathway_show = params$n_pathway_show ) kbl(gage) %>% kable_classic(full_width = F, html_font = "Cambria") }
if (params$pathway_method == 2) { # only remove pathway ID for Ensembl species show_pathway_id <- params$show_pathway_id # always show pathway ID for STRING species if (params$select_org < 0) { show_pathway_id <- TRUE } plot_pgsea( my_range = c(params$min_set_size, params$max_set_size), processed_data = params$pre_processed, contrast_samples = params$contrast_samples, gene_sets = params$gene_sets, pathway_p_val_cutoff = params$pathway_p_val_cutoff, n_pathway_show = params$n_pathway_show, select_go = params$go, show_pathway_id = show_pathway_id, margin = c(3, 1, 13, 20) ) }
if (params$pathway_method == 4) { # only remove pathway ID for Ensembl species show_pathway_id <- params$show_pathway_id # always show pathway ID for STRING species if (params$select_org < 0) { show_pathway_id <- TRUE } pgsea_plot_all( go = params$go, my_range = c(params$min_set_size, params$max_set_size), data = params$pre_processed, select_contrast = params$contrast_samples, gene_sets = params$gene_sets, pathway_p_val_cutoff = params$pathway_p_val_cutoff, n_pathway_show = params$n_pathway_show, select_go = params$go, show_pathway_id = show_pathway_id, margin = c(3, 1, 13, 20) ) }
if (params$pathway_method %in% c(6:8)) { gsva_algorithm <- switch( as.numeric(params$pathway_method) - 5, "gsva", #6 "ssgsea", #7 "plage" #8 ) # only remove pathway ID for Ensembl species show_pathway_id <- params$show_pathway_id # always show pathway ID for STRING species if (params$select_org < 0) { show_pathway_id <- TRUE } plot_gsva( my_range = c(params$min_set_size, params$max_set_size), processed_data = params$pre_processed, contrast_samples = params$contrast_samples, gene_sets = params$gene_sets, pathway_p_val_cutoff = params$pathway_p_val_cutoff, n_pathway_show = params$n_pathway_show, select_go = params$go, show_pathway_id = show_pathway_id, algorithm = gsva_algorithm ) }
if (params$pathway_method == 3) { fgsea_pathway_data <- fgsea_data( select_contrast = params$select_contrast, my_range = c(params$min_set_size, params$max_set_size), limma = params$limma, gene_p_val_cutoff = params$gene_p_val_cutoff, gene_sets = params$gene_sets, absolute_fold = params$absolute_fold, pathway_p_val_cutoff = params$pathway_p_val_cutoff, n_pathway_show = params$n_pathway_show ) kbl(fgsea_pathway_data) %>% kable_classic(full_width = F, html_font = "Cambria") }
idepGolem::enrichment_tree_plot( go_table = params$pathway_list_data, group = "All Groups", right_margin = 10 )
network_data <- idepGolem::network_data( network = params$pathway_list_data, up_down_reg_deg = params$up_down_reg_deg, wrap_text_network_deg = params$wrap_text_network_deg, layout_vis_deg = params$layout_vis_deg, edge_cutoff_deg = params$edge_cutoff_deg ) idepGolem::vis_network_plot( network_data = network_data )
params$sig_pathways
if(!is.null(params$sig_pathways)) { deg_heatmap( df = params$selected_pathway_data, bar = NULL, heatmap_color_select = unlist(strsplit(params$heatmap_color_select, "-")), cluster_rows = TRUE ) } else { print("Click on the Heatmap tab to do the analysis first.") }
out_image <- kegg_pathway( go = params$go, gage_pathway_data = params$pathway_list_data[, 1:5], sig_pathways = params$sig_pathways_kegg, select_contrast = params$select_contrast, limma = params$limma, converted = params$converted, idep_data = params$idep_data, select_org = params$select_org, low_color = params$kegg_colors[[params$kegg_color_select]][1], high_color = params$kegg_colors[[params$kegg_color_select]][2] )
\centering
r params$sig_pathways_kegg
{width=100%}
# GAGE Method if (params$pathway_method == 0) { gene_sets <- read_gene_sets( converted = params$converted, all_gene_names = params$all_gene_names, go = params$go, select_org = params$select_org, idep_data = params$idep_data, my_range = params$my_range ) gage <- gage_data( select_go = params$go, select_contrast = params$select_contrast, min_set_size = params$min_set_size, max_set_size = params$max_set_size, limma = params$limma, gene_p_val_cutoff = params$gene_p_val_cutoff, gene_sets = params$gene_sets, absolute_fold = params$absolute_fold, pathway_p_val_cutoff = params$pathway_p_val_cutoff, n_pathway_show = params$n_pathway_show ) gage }
# PGSEA -- Not tested if (params$pathway_method == 2) { res <- get_pgsea_plot_data( my_range = c(params$min_set_size, params$max_set_size), data = params$pre_process$data, select_contrast = params$select_contrast, gene_sets = params$gene_sets, sample_info = params$sample_info, select_factors_model = deg$select_factors_model, select_model_comprions = deg$select_model_comprions, pathway_p_val_cutoff = params$pathway_p_val_cutoff, n_pathway_show = params$n_pathway_show ) pathway_list_data <- get_pathway_list_data( pathway_method = params$pathway_method, gage_pathway_data = NULL, # gage_pathway_data(), fgsea_pathway_data = NULL, # fgsea_pathway_data(), pgsea_plot_data = res, pgsea_plot_all_samples_data = NULL, # pgsea_plot_all_samples_data(), go = params$go, select_org = params$select_org, gene_info = params$all_gene_info, gene_sets = params$gene_sets ) idepGolem::enrichment_tree_plot( go_table = pathway_list_data, group = "All Groups" # , # right_margin = 45 ) }
Free for academic use. No warranty of correctness.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.