R/makeFilterStats.R

Defines functions listBuiltInFilterStats

Documented in listBuiltInFilterStats

#' @name reduceFunctions
#' @title Filtering statistics and Dimensionality Reduction Functions
#' @description Functions for calculating and manipulating either filtering
#'   statistics, stored in rowData, or the dimensionality reduction results,
#'   stored in reducedDims.
#' @aliases reduceFunctions makeFilterStats
#'   makeFilterStats,SummarizedExperiment-method
#' @param filterStats character vector of statistics to calculate. Must be one
#'   of the character values given by \code{listBuildInFilterStats()}.
#' @param filterNames if given, defines the names that will be assigned to the 
#'  filtering statistics in the \code{rowData} of the object. If missing, will be 
#'  just the value of \code{filterStats} argument
#' @return \code{makeFilterStats} returns a
#'   \code{\link[SummarizedExperiment]{SummarizedExperiment}} object with the
#'   requested filtering statistics will be added to the \code{DataFrame} in the
#'   \code{rowData} slot and given names corresponding to the \code{filterStats}
#'   values. Warning: the function will overwrite existing columns in
#'   \code{rowData} with the same name. Columns in the \code{rowData} slot with
#'   different names should not be affected.
#' @inheritParams transformData
#' @rdname reduceFunctions
#'
#' @examples
#' data(simData)
#' listBuiltInFilterStats()
#' scf<-makeFilterStats(simData,filterStats=c("var","mad"))
#' scf
#' scfFiltered<-filterData(scf,filterStats="mad",percentile=10)
#' scfFiltered
#' assay(scfFiltered)[1:10,1:10]
#' @export
setMethod(
  f = "makeFilterStats",
  signature = "SummarizedExperiment",
  definition = function(object,filterStats=listBuiltInFilterStats(),transFun=NULL,isCount=FALSE,filterNames=NULL,whichAssay=1)
  {
    
    ###################
    ##Check user inputs
    ###################
    #check valid options for reducedDims
    filterStats<-unique(filterStats)
    if(!all(filterStats %in% listBuiltInFilterStats())){
      stop("Not all of the filterStats given are valid. Must be one of listBuiltInFilterStats().")
    }
    if(!is.null(filterNames)){
      if(length(unique(filterStats))!=length(filterStats)) stop("cannot set filterNames if filterStats not unique")
      if(!is.character(filterNames) || length(filterNames)!=length(filterStats)) stop("invalid values of filterNames")
      filterStatsOrig<-filterStats #preserve the original order of names
    }
    ###################
    ##Clean up data:
    ###################
    #transform data
    x<-transformData(object,transFun=transFun,isCount=isCount,whichAssay=whichAssay)
    
    ###################
    ##Do loop over filterStats values:
    ###################
    if('abscv' %in% filterStats){
      #origfilterStats<-filterStats
      #if abscv, add var and mean since calculating anyway and make abscv last one
      filterStats<-unique(c(filterStats,"var","mean"))
      doCV<-TRUE
      whCV<-grep('abscv',filterStats)
      filterStats<-c(filterStats[-whCV])
    }
    else doCV<-FALSE
    ### Problem here in hdf5
    filterStatData<-sapply(filterStats,function(statName){
      f<-.matchToStats(x)[[statName]]
      f(x)
    })
    if(doCV){
      filterStatData<-cbind(filterStatData, "abscv"=sqrt(filterStatData[,"var"])/abs(filterStatData[,"mean"]))
      #filterStatData<-filterStatData[,origfilterStats] #put it in order, though user shouldn't depend on it.
    }
    if(!is.null(filterNames)){
      m<-match(filterStatsOrig,colnames(filterStatData))
      if(any(is.na(m))) stop("error in assigning given filterNames to filterStats")
      colnames(filterStatData)[m]<-filterNames			
    }
    filterStats(object)<-filterStatData #should leave in place existing ones, update conflicting ones, and add new ones!
    return(object)
    
  }
)
#' @rdname reduceFunctions
#' @export
setMethod(
  f = "makeFilterStats",
  signature = "matrixOrHDF5",
  definition = function(object,...)
  {
    makeFilterStats(SummarizedExperiment(object),...)
  }
)

#' @rdname reduceFunctions
#' @export
#' @param whichClusterIgnoreUnassigned indicates clustering that should be used
#'   to filter out unassigned samples from the calculations. If \code{NULL} no
#'   filtering of samples will be done. See details for more information.
#' @details \code{whichClusterIgnoreUnassigned} is only an option when applied
#'   to a \code{ClusterExperiment} classs and indicates that the filtering
#'   statistics should be calculated based on samples that are unassigned by the
#'   designated clustering. The name given to the filter in this case is of the
#'   form \code{<filterStats>_<clusterLabel>}, i.e. the clustering label of the
#'   clustering is appended to the standard name for the filtering statistic.
#'
setMethod(
  f = "makeFilterStats",
  signature = "ClusterExperiment",
  definition = function(object,whichClusterIgnoreUnassigned=NULL,filterStats=listBuiltInFilterStats(),...)
  {
    if(any(c("transFun","isCount") %in% names(list(...)))) 
      stop("The internally saved transformation function of a ClusterExperiment object must be used when given as input and setting 'transFun' or 'isCount' for a 'ClusterExperiment' is not allowed.")  
    filterStats<-unique(filterStats)
    if(!is.null(whichClusterIgnoreUnassigned)){
      whCluster<-getClusterIndex(object,whichClusterIgnoreUnassigned,noMatch="silentlyRemove")
      if(length(whCluster)>1) warning("'whichClusterIgnoreUnassigned' corresponds to multiple clusterings. Ignoring argument")
      else if(length(whCluster)==0) warning("'whichClusterIgnoreUnassigned' does not correspond to a clustering. Ignoring argument.")
      else{
        #give new names to filters to indicate based on clustering.
        newNames<-.makeClusterFilterStats(filterStats,clusterLabels(object)[whCluster])
        whDo<-which(!isFilterStats(object,newNames))
        if(length(whDo)>0){
          whAssigned<-which(clusterMatrix(object)[,whCluster]>0)
          if(length(whAssigned)>0){
            out<-makeFilterStats(object[,whAssigned],filterStats=filterStats[whDo],filterNames=newNames[whDo],...)
          }
          else 
            stop("All samples are unassigned for clustering", clusterLabels(object)[whCluster])
          
        }
        else return(object) #already calculated all of the requested values
      }
    }
    else{
      out<-makeFilterStats(as(object,"SingleCellExperiment"),filterStats=filterStats,transFun=transformation(object),...)
    }
    #	
    filterStats(object)<-filterStats(out)
    return(object)
  }
)


#' @rdname reduceFunctions
#' @export
listBuiltInFilterStats<-function(){c('var', 'abscv', 'mad','mean','iqr','median')}

#' @importFrom matrixStats rowVars rowMeans2 rowMads rowMedians rowIQRs
setMethod(
  f = ".matchToStats",
  signature = "matrix",
  definition = function(object){
    S4Vectors::SimpleList(
      'var'=matrixStats::rowVars,
      'mad'=matrixStats::rowMads,
      'mean'=matrixStats::rowMeans2,
      'iqr'=matrixStats::rowIQRs,
      'median'=matrixStats::rowMedians)
  }
)
  
### need to go back to this and check what are the best options for these functions. 
#' @importFrom stats IQR
#' @importFrom S4Vectors SimpleList
setMethod(
  f = ".matchToStats",
  signature = "DelayedArray",
  definition = function(object){
    S4Vectors::SimpleList(
      'var'=function(x){apply(x,1,var)},
      'mad'=function(x){apply(x,1,mad)},
      'mean'=DelayedArray::rowMeans,
      'iqr'=function(x){apply(x,1,stats::IQR)},
      'median'=function(x){apply(x,1,median)})
    
  })
#' @rdname reduceFunctions
#' @aliases filterData
#' @param cutoff numeric. A value at which to filter the rows (genes) for the
#'   test statistic
#' @param percentile numeric. Either a number between 0,1 indicating what
#'   percentage of the rows (genes) to keep or an integer value indicated the
#'   number of rows (genes) to keep
#' @param absolute whether to take the absolute value of the filter statistic
#' @param keepLarge logical whether to keep rows (genes) with large values of
#'   the test statistic or small values of the test statistic.
#' @details Note that \code{filterData} returns a SingleCellExperiment object.
#'   To get the actual data out use either assay or \code{\link{transformData}}
#'   if transformed data is desired.
#' @return \code{filterData} returns a SingleCellExperiment object with the rows
#'   (genes) removed based on filters
#' @export
#' @importFrom stats quantile
setMethod( 
  f="filterData","SummarizedExperiment",
  function(object,filterStats,cutoff,percentile, absolute=FALSE,keepLarge=TRUE, whichAssay=1){
    stat<-filterStats(object,filterStats)
    if(!is.null(dim(stat))){
      if(NCOL(stat)==1) stat<-stat[,1]
      else stop("Attempting to filtering on more than one filter statistic")
    }
    if(absolute) stat<-abs(stat)
    if(missing(cutoff) & missing(percentile)) stop("must provide one of cutoff or percentile")
    if(!missing(cutoff) & !missing(percentile)) stop("can only provide one of cutoff or percentile")
    if(!missing(cutoff)){
      whKeep<- if(keepLarge) which(stat>cutoff) else which(cutoff > stat)
    }
    if(!missing(percentile)){
      if(0<percentile & percentile <1){
        quantile<- quantile(stat,probs=if(keepLarge) percentile else 1-percentile,na.rm=TRUE)
        whKeep<-if(keepLarge) which(stat>quantile) else which(stat<quantile)
      }
      else{
        if(is.na(percentile) || percentile>=1){
          if(is.na(percentile) || percentile>NROW(object)){
            warning("the number of most features requested after filtering is either missing or larger than the number of features. Will not do any filtering")
            whKeep<-seq_len(NROW(object))
          }
          else whKeep<- order(stat,decreasing=ifelse(keepLarge,TRUE,FALSE),na.last=NA)[seq_len(percentile)]
        }
        else stop("Invalid value for percentile. Must be either between 0,1 or a positive integer number to keep")
      }
    }
    object[whKeep,]
    
  }
)	


#' @rdname reduceFunctions
#' @return \code{filterNames} returns a vector of the columns of the rowData
#'   that are considered valid filtering statistics. Currently any numeric
#'   column in rowData is a valid filtering statistic.
#' @aliases filterNames
#' @export
setMethod( "filterNames","SummarizedExperiment",function(object){
  checkValid<-TRUE
  if(!checkValid || ncol(rowData(object))==0) colnames(rowData(object))
  else{
    whValid<- sapply(rowData(object),is.numeric)
    # #for now, do not allow NA values for valid filters.
    # whNa<-which(apply(rowData,2,anyNA))
    # whValid[whNA]<-FALSE
    return(names(rowData(object))[whValid])
    
  }
})	
epurdom/clusterExperiment documentation built on April 28, 2024, 8:17 p.m.