#' Invoke PROPER and replace its default data set with data of interest.
#'
#' Recent reviewers of Najib's grants have taken an increased interest in
#' knowing the statistical power of the various experiments. He queried
#' Dr. Corrada-Bravo who suggested PROPER. I spent some time looking through it
#' and, with some revervations, modified its workflow to (at least in theory) be
#' able to examine any dataset. The workflow in question is particularly odd
#' and warrants further discussion/analysis. This function invokes PROPER
#' exactly as it was performed in their paper.
#'
#' @param de_tables A set of differential expression results, presumably from
#' EdgeR or DESeq2.
#' @param p Cutoff
#' @param experiment The default data set in PROPER is entitled 'cheung'.
#' @param nsims Number of simulations to perform.
#' @param reps Simulate these number of experimental replicates.
#' @param de_method There are a couple choices here for tools which are pretty
#' old, my version of this only accepts deseq or edger.
#' @param alpha_type I assume p-adjust type.
#' @param alpha Accepted fdr rate.
#' @param stratify There are a few options here, I don't fully understand them.
#' @param target Cutoff.
#' @param add_coverage Add a line showing the actual coverage observed?
#' @param filter Apply a filter?
#' @param delta Not epsilon! (E.g. I forget what this does).
#' @return List containing the various results and plots from proper.
#' @seealso [PROPER] DOI:10.1093/bioinformatics/btu640
default_proper <- function(de_tables, p = 0.05, experiment = "cheung", nsims = 20,
reps = c(3, 5, 7, 10), de_method = "edger", alpha_type = "fdr",
alpha = 0.1, stratify = "expr", target = "lfc", add_coverage = TRUE,
filter = "none", delta = 0.5) {
DEmethod <- "edgeR"
if (de_method == "edger") {
DEmethod <- "edgeR"
} else if (de_method == "deseq") {
DEmethod <- "DESeq2"
} else {
stop("This accepts only 'deseq' or 'edger'.")
}
genes <- nrow(de_tables[["data"]][[1]])
attached <- attachNamespace("PROPER")
ds <- c(experiment)
loaded <- data(list = ds, package = "PROPER")
simulation_options <- PROPER::RNAseq.SimOptions.2grp(
ngenes = genes,
p.DE = p,
lOD = experiment,
lBaselineExpr = experiment)
simulation_result <- PROPER::runSims(Nreps = reps,
sim.opts = simulation_options,
DEmethod = DEmethod,
nsims = nsims)
## alpha_types : fdr, pval
## stratify types : expr, dispersion
## filter types : none, expr
## target types : lfc, effectsize
powers <- PROPER::comparePower(simulation_result,
alpha.type = alpha_type,
alpha.nominal = alpha,
stratify.by = stratify,
filter.by = filter,
target.by = target,
delta = delta)
tmp_file <- tmpmd5file(pattern = "power", fileext = ".png")
this_plot <- png(filename = tmp_file)
controlled <- dev.control("enable")
PROPER::plotPower(powers)
power_plot <- grDevices::recordPlot()
dev.off()
removed <- suppressWarnings(file.remove(tmp_file))
removed <- unlink(dirname(tmp_file))
tmp_file <- tmpmd5file(pattern = "power", fileext = ".png")
this_plot <- png(filename = tmp_file)
controlled <- dev.control("enable")
PROPER::plotPowerTD(powers)
powertd_plot <- grDevices::recordPlot()
dev.off()
removed <- suppressWarnings(file.remove(tmp_file))
removed <- unlink(dirname(tmp_file))
tmp_file <- tmpmd5file(pattern = "power", fileext = ".png")
this_plot <- png(filename = tmp_file)
controlled <- dev.control("enable")
PROPER::plotPowerFD(powers)
powerfd_plot <- grDevices::recordPlot()
dev.off()
removed <- suppressWarnings(file.remove(tmp_file))
removed <- unlink(dirname(tmp_file))
tmp_file <- tmpmd5file(pattern = "power", fileext = ".png")
this_plot <- png(filename = tmp_file)
controlled <- dev.control("enable")
PROPER::plotFDcost(powers)
fdcost_plot <- grDevices::recordPlot()
dev.off()
removed <- suppressWarnings(file.remove(tmp_file))
removed <- unlink(dirname(tmp_file))
tmp_file <- tmpmd5file(pattern = "power", fileext = ".png")
this_plot <- png(filename = tmp_file)
controlled <- dev.control("enable")
PROPER::plotPowerHist(powerOutput = powers, simResult = simulation_result)
powerhist_plot <- grDevices::recordPlot()
dev.off()
removed <- suppressWarnings(file.remove(tmp_file))
removed <- unlink(dirname(tmp_file))
tmp_file <- tmpmd5file(pattern = "power", fileext = ".png")
this_plot <- png(filename = tmp_file)
controlled <- dev.control("enable")
PROPER::plotPowerAlpha(powers)
poweralpha_plot <- grDevices::recordPlot()
dev.off()
removed <- suppressWarnings(file.remove(tmp_file))
removed <- unlink(dirname(tmp_file))
grant_text <- glue("Assume the transcriptome mean and variation profiles are similar to those from mouse
striatum cells in previous studies, and the magnitude of true differential expression is similar
to the level observed between two strains of mice. If we expect to identify 80% of DE genes
whose log fold change is beyond 0.5, when the sequencing depth is at 5-million and FDR is
controlled at 0.2, we need to have at least 5 samples in each treatment group.")
power_table <- PROPER::power.seqDepth(simResult = simulation_result, powerOutput = powers)
retlist <- list(
"options" = simulation_options,
"simulation" = simulation_result,
"powers" = powers,
"power_plot" = power_plot,
"powertd_plot" = powertd_plot,
"powerfd_plot" = powerfd_plot,
"fdcost_plot" = fdcost_plot,
"powerhist_plot" = powerhist_plot,
"poweralpha_plot" = poweralpha_plot,
"power_table" = power_table,
"grant_text" = grant_text)
return(retlist)
}
#' Invoke PROPER and replace its default data set with data of interest.
#'
#' Recent reviewers of Najib's grants have taken an increased interest in
#' knowing the statistical power of the various experiments. He queried
#' Dr. Corrada-Bravo who suggested PROPER. I spent some time looking through it
#' and, with some revervations, modified its workflow to (at least in theory) be
#' able to examine any dataset. The workflow in question is particularly odd
#' and warrants further discussion/analysis. This function is a modified
#' version of 'default_proper()' above and invokes PROPER after re-formatting a
#' given dataset in the way expected by PROPER.
#'
#' @param de_tables A set of differential expression results, presumably from
#' EdgeR or DESeq2.
#' @param p Cutoff
#' @param experiment The default data set in PROPER is entitled 'cheung'.
#' @param nsims Number of simulations to perform.
#' @param reps Simulate these number of experimental replicates.
#' @param de_method There are a couple choices here for tools which are pretty
#' old, my version of this only accepts deseq or edger.
#' @param alpha_type I assume p-adjust type.
#' @param alpha Accepted fdr rate.
#' @param stratify There are a few options here, I don't fully understand them.
#' @param target Cutoff.
#' @param mean_or_median Use mean or median values?
#' @param filter Apply a filter?
#' @param delta Not epsilon! (E.g. I forget what this does).
#' @param add_coverage When plotting, add a line showing the actual coverage?
#' @param target_power When creating boilerplate text for a grant, specify power goal.
#' @param mean_gene_length When making text, specify the mean gene length expected.
#' @param nt_per_read Specify how many reads are in each read(pair).
#' @param describe_samples Add a guestimate of the number of samples required for the power goal.
#' @return List containin the various tables and plots returned by PROPER.
#' @seealso [PROPER] DOI:10.1093/bioinformatics/btu640
#' @export
simple_proper <- function(de_tables, p = 0.05, experiment = "cheung", nsims = 20,
reps = c(3, 5, 7, 10), de_method = "edger", alpha_type = "fdr",
alpha = 0.1, stratify = "expr", target = "lfc", mean_or_median = "mean",
filter = "none", delta = 1.0, add_coverage = TRUE, target_power = 0.8,
mean_gene_length = 2000, nt_per_read = 200, describe_samples = 5) {
DEmethod <- "edgeR"
if (de_method == "edger") {
DEmethod <- "edgeR"
} else if (de_method == "deseq") {
DEmethod <- "DESeq2"
} else {
stop("This accepts only 'edger' or 'deseq'.")
}
exprs_mtrx <- exprs(de_tables[["input"]][["input"]])
genes <- nrow(de_tables[["data"]][[1]])
contrasts <- as.character(de_tables[["table_names"]])
result_list <- list()
## For the moment this will hard-assume edger, but should be trivially changed for the others.
count <- 0
for (con in contrasts) {
invertedp <- grepl(x = con, pattern = "-inverted$")
short <- gsub(x = con, pattern = "-inverted$", replacement = "")
invert_con <- short
used <- short
if (isTRUE(invertedp)) {
invert_con <- gsub(x = short, pattern = "^(\\w+)_vs_(\\w+)", replacement = "\\2_vs_\\1")
}
datum <- de_tables[["input"]][[de_method]]
count <- count + 1
samples <- datum[["contrast_list"]][[short]]
if (is.null(samples)) {
used <- invert_con
samples <- datum[["contrast_list"]][[invert_con]]
}
model <- datum[["model"]]
used_levels_idx <- samples != 0
used_levels <- rownames(samples)[used_levels_idx]
all_samples <- rownames(model)
used_samples_idx <- rowSums(model[, used_levels]) > 0
used_samples <- all_samples[used_samples_idx]
used_mtrx <- exprs_mtrx[, used_samples]
sample_coverages <- NULL
all_coverage <- NULL
if (mean_or_median == "mean") {
sample_coverages <- colMeans(used_mtrx)
all_coverage <- mean(sample_coverages)
} else {
sample_coverages <- miscTools::colMedians(used_mtrx)
all_coverage <- median(sample_coverages)
}
x_intercept <- 0
## The points on the x-axis are: 0, 10, 20, 40, 80, 160, 320, 640, 1280, inf
cutoffs <- c(10, 20, 40, 80, 160, 320, 640, 1280, 2560)
clen <- length(cutoffs)
for (d in seq_len(clen)) {
cutoff <- cutoffs[d]
adder <- d - 1
if (all_coverage < cutoff) {
x_intercept <- adder + ((all_coverage - cutoffs[adder]) / cutoff)
}
}
message("Working on contrast ", count, ": ", con, ".")
simulation_options <- list(
"ngenes" = genes,
"p.DE" = p,
"sim.seed" = as.numeric(Sys.time()),
"design" = "2grp")
if (de_method == "edger") {
simulation_options[["lBaselineExpr"]] <- datum[["lrt"]][[used]][["AveLogCPM"]]
simulation_options[["lOD"]] = log2(datum[["lrt"]][[used]][["dispersion"]])
simulation_options[["lfc"]] = datum[["all_tables"]][[used]][["logFC"]]
} else {
simulation_options[["lBaselineExpr"]] = datum[["all_tables"]][[used]][["baseMean"]]
simulation_options[["lOD"]] = datum[["all_tables"]][[used]][["lfcSE"]]
simulation_options[["lfc"]] = datum[["all_tables"]][[used]][["logFC"]]
}
simulation_result <- my_runsims(Nreps = reps,
sim.opts = simulation_options,
DEmethod = DEmethod,
nsims = nsims)
powers <- PROPER::comparePower(simulation_result,
alpha.type = alpha_type,
alpha.nominal = alpha,
stratify.by = stratify,
filter.by = filter,
target.by = target,
delta = delta)
tmp_file <- tmpmd5file(pattern = "power", fileext = ".png")
this_plot <- png(filename = tmp_file)
controlled <- dev.control("enable")
## PROPER's plotting functions result in a bunch of annoying warnings.
suppressWarnings(PROPER::plotPower(powers))
if (isTRUE(add_coverage)) {
abline(v = x_intercept)
}
power_plot <- grDevices::recordPlot()
off <- dev.off()
removed <- suppressWarnings(file.remove(tmp_file))
removed <- unlink(dirname(tmp_file))
tmp_file <- tmpmd5file(pattern = "power", fileext = ".png")
this_plot <- png(filename = tmp_file)
controlled <- dev.control("enable")
suppressWarnings(PROPER::plotPowerTD(powers))
if (isTRUE(add_coverage)) {
abline(v = x_intercept)
}
powertd_plot <- grDevices::recordPlot()
off <- dev.off()
removed <- suppressWarnings(file.remove(tmp_file))
removed <- unlink(dirname(tmp_file))
tmp_file <- tmpmd5file(pattern = "power", fileext = ".png")
this_plot <- png(filename = tmp_file)
controlled <- dev.control("enable")
suppressWarnings(PROPER::plotPowerFD(powers))
if (isTRUE(add_coverage)) {
abline(v = x_intercept)
}
powerfd_plot <- grDevices::recordPlot()
off <- dev.off()
removed <- suppressWarnings(file.remove(tmp_file))
removed <- unlink(dirname(tmp_file))
tmp_file <- tmpmd5file(pattern = "power", fileext = ".png")
this_plot <- png(filename = tmp_file)
controlled <- dev.control("enable")
suppressWarnings(PROPER::plotFDcost(powers))
if (isTRUE(add_coverage)) {
abline(v = x_intercept)
}
fdcost_plot <- grDevices::recordPlot()
off <- dev.off()
removed <- suppressWarnings(file.remove(tmp_file))
removed <- unlink(dirname(tmp_file))
tmp_file <- tmpmd5file(pattern = "power", fileext = ".png")
this_plot <- png(filename = tmp_file)
controlled <- dev.control("enable")
suppressWarnings(PROPER::plotPowerHist(powerOutput = powers, simResult = simulation_result))
if (isTRUE(add_coverage)) {
abline(v = x_intercept)
}
powerhist_plot <- grDevices::recordPlot()
off <- dev.off()
removed <- suppressWarnings(file.remove(tmp_file))
removed <- unlink(dirname(tmp_file))
tmp_file <- tmpmd5file(pattern = "power", fileext = ".png")
this_plot <- png(filename = tmp_file)
controlled <- dev.control("enable")
suppressWarnings(PROPER::plotPowerAlpha(powers))
if (isTRUE(add_coverage)) {
abline(v = x_intercept)
}
poweralpha_plot <- grDevices::recordPlot()
off <- dev.off()
removed <- suppressWarnings(file.remove(tmp_file))
removed <- unlink(dirname(tmp_file))
## Stealing from plotPower to get the relevant cutoffs
nsims = dim(powers[["power"]])[3]
observed_power = apply(powers[["power"]], c(1, 2), mean, na.rm = TRUE)
power_se = apply(powers[["power"]], c(1, 2), sd, na.rm = TRUE) / sqrt(nsims)
ix.na = apply(observed_power, 1, function(x) all(is.na(x)))
observed_power = observed_power[!ix.na, ]
power_se = power_se[!ix.na, ]
strata = levels(cut(0, powers[["strata"]]))
strata = strata[!ix.na]
chosen_replicate_column <- which(reps == describe_samples)
chosen_replicates_first_gt <- which(observed_power[, chosen_replicate_column] >=
target_power)[1]
chosen_rep_stratum <- strata[chosen_replicates_first_gt]
max_required_coverage <- gsub(x = chosen_rep_stratum,
pattern = "^.*,(\\d+)\\]$", replacement = "\\1")
assumed_gene_sum <- mean_gene_length * genes
max_coverage <- max(sample_coverages)
assumed_reads_for_coverage <- (assumed_gene_sum / nt_per_read) *
as.numeric(max_coverage)
pct <- target_power * 100.0
interpolated_text <- glue(" Assuming similar expression patterns and variance to the
provided experiment, comparing {used}, and a FDR
cutoff of {p}, simulations by PROPER (DOI:10.1093/bioinformatics/btu640)
suggest that it should be possible to identify {pct}% of DE genes with a |log2FC| >= {delta}
when the sequencing depth is in the range of {chosen_rep_stratum} using {describe_samples}
replicates in each group.
Assuming the {genes} genes used have a mean length of {mean_gene_length} and the sequencing run
produces {nt_per_read}nt per read, ~{prettyNum(assumed_reads_for_coverage, big.mark=',')} \\
reads will be required per sample to
approach {max_required_coverage} reads per gene.")
## TODO: Add some interpolation of the actual results here.
grant_text <- "Assume the transcriptome mean and variation profiles are similar to those
from mouse striatum cells in previous studies, and the magnitude of true differential
expression is similar to the level observed between two strains of mice. If we expect to
identify 80% of DE genes whose log fold change is beyond 0.5, when the sequencing depth is
at 5-million and FDR is controlled at 0.2, we need to have at least 5 samples in each
treatment group."
power_table <- PROPER::power.seqDepth(simResult = simulation_result, powerOutput = powers)
retlist <- list(
"options" = simulation_options,
"simulation" = simulation_result,
"powers" = powers,
"power_plot" = power_plot,
"powertd_plot" = powertd_plot,
"powerfd_plot" = powerfd_plot,
"fdcost_plot" = fdcost_plot,
"powerhist_plot" = powerhist_plot,
"poweralpha_plot" = poweralpha_plot,
"power_table" = power_table,
"grant_text" = grant_text,
"interpolated_text" = interpolated_text)
result_list[[used]] <- retlist
}
class(result_list) <- "proper_estimate"
return(result_list)
}
## Use my cheater infix ::: to handle some unexported stuff from PROPER.
update.RNAseq.SimOptions.2grp <- "PROPER" %:::% "update.RNAseq.SimOptions.2grp"
run.edgeR <- "PROPER" %:::% "run.edgeR"
run.DSS <- "PROPER" %:::% "run.DSS"
run.DESeq2 <- "PROPER" %:::% "run.DESeq2"
#' A version of PROPER:::runsims which is (hopefully) a little more robust.
#'
#' When I was testing PROPER, it fell down mysteriously on a few occasions. The
#' source ended up being in runsims(), ergo this function. This is
#' therefore mostly a copy/paste of that function with a few small
#' changes.
#'
#' @param Nreps Vector of numbers of replicates to simulate.
#' @param Nreps2 Second vector of replicates.
#' @param nsims How many simulations to perform?
#' @param sim.opts Options provided in a list which include information about the expression,
#' numbers of genes, logFC values, etc.
#' @param DEmethod I suggest using only either edgeR or DESeq2.
#' @param verbose Print some information along the way?
#' @seealso [PROPER]
my_runsims <- function (Nreps = c(3, 5, 7, 10), Nreps2, nsims = 100, sim.opts,
DEmethod = c("edgeR", "DSS", "DESeq", "DESeq2"), verbose = TRUE) {
DEmethod <- match.arg(DEmethod)
if (missing(Nreps2)) {
Nreps2 <- Nreps
} else {
if (length(Nreps2) != length(Nreps)) {
stop("Nreps and Nreps2 must be vectors of the same length")
}
}
n1 <- max(Nreps)
n2 <- max(Nreps2)
old_seed <- set.seed(sim.opts[["sim.seed"]])
pvalue <- fdrs <- xbar <- array(NA,
dim = c(sim.opts[["ngenes"]],
length(Nreps), nsims))
DEids <- lfcs <- NULL
for (i in seq_len(nsims)) {
sim.opts[["sim.seed"]] <- sim.opts[["sim.seed"]] + 1
sim.opts <- update.RNAseq.SimOptions.2grp(sim.opts)
dat.sim.big <- PROPER::simRNAseq(sim.opts, n1, n2)
DEids[[i]] <- dat.sim.big[["DEid"]]
lfcs[[i]] <- dat.sim.big[["simOptions"]][["lfc"]]
for (j in seq_along(Nreps)) {
nn1 <- Nreps[j]
nn2 <- Nreps2[j]
idx <- c(1:nn1, n1 + (1:nn2))
this.design <- dat.sim.big[["designs"]][idx]
this.X <- dat.sim.big[["counts"]][, idx]
this.simOpts <- sim.opts
ss <- rowSums(this.X)
ix_na <- is.na(ss)
if (sum(ix_na) > 0) {
ss[ix_na] <- 0
}
ix.valid <- ss > 0
this.X.valid <- this.X[ix.valid, , drop = FALSE]
data0 <- list(counts = this.X.valid, designs = this.design)
if (DEmethod == "edgeR") {
res1 <- run.edgeR(data0)
}
if (DEmethod == "DSS") {
res1 <- run.DSS(data0)
}
if (DEmethod == "DESeq2") {
res1 <- run.DESeq2(data0)
}
pval <- fdr <- rep(1, nrow(this.X))
X.bar1 <- rep(0, nrow(this.X))
pval[ix.valid] <- res1[, "pval"]
fdr[ix.valid] <- res1[, "fdr"]
sizeF <- colSums(data0[["counts"]])
sizeF <- sizeF / median(sizeF)
X.bar1[ix.valid] <- rowMeans(sweep(data0[["counts"]], 2,
sizeF, FUN = "/"))
pvalue[, j, i] <- pval
fdrs[, j, i] <- fdr
xbar[, j, i] <- X.bar1
}
}
retlist <- list(
"pvalue" = pvalue,
"fdrs" = fdrs,
"xbar" = xbar,
"DEid" = DEids,
"lfcs" = lfcs,
"Nreps1" = Nreps,
"Nreps2" = Nreps2,
"sim.opts" = sim.opts)
return(retlist)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.