R/CoreMethods.R

Defines functions AnnotationScatterPlot.SingleCellExperiment GeneHeatmap.SingleCellExperiment VlnPlot.SingleCellExperiment FindGeneMarkers.SingleCellExperiment FindAllGeneMarkers.SingleCellExperiment ClusteringScatterPlot.SingleCellExperiment GeneScatterPlot.SingleCellExperiment RenameCluster.SingleCellExperiment RenameAllClusters.SingleCellExperiment MergeClusters.SingleCellExperiment SelectKClusters.SingleCellExperiment SilhouetteCurve.SingleCellExperiment CalcSilhInfo.SingleCellExperiment HierarchicalClustering.SingleCellExperiment RunTSNE.SingleCellExperiment RunUMAP.SingleCellExperiment PCAElbowPlot.SingleCellExperiment RunPCA.SingleCellExperiment RunParallelICP.SingleCellExperiment PrepareILoReg.SingleCellExperiment

Documented in AnnotationScatterPlot.SingleCellExperiment CalcSilhInfo.SingleCellExperiment ClusteringScatterPlot.SingleCellExperiment FindAllGeneMarkers.SingleCellExperiment FindGeneMarkers.SingleCellExperiment GeneHeatmap.SingleCellExperiment GeneScatterPlot.SingleCellExperiment HierarchicalClustering.SingleCellExperiment MergeClusters.SingleCellExperiment PCAElbowPlot.SingleCellExperiment PrepareILoReg.SingleCellExperiment RenameAllClusters.SingleCellExperiment RenameCluster.SingleCellExperiment RunParallelICP.SingleCellExperiment RunPCA.SingleCellExperiment RunTSNE.SingleCellExperiment RunUMAP.SingleCellExperiment SelectKClusters.SingleCellExperiment SilhouetteCurve.SingleCellExperiment VlnPlot.SingleCellExperiment

#' @title Prepare \code{SingleCellExperiment} object for \code{ILoReg} analysis
#'
#' @description
#' This function prepares the \code{SingleCellExperiment} object for
#' \code{ILoReg} analysis. The only required input is an object of class
#' \code{SingleCellExperiment} with at least data in the \code{logcounts} slot.
#'
#' @param object an object of \code{SingleCellExperiment} class
#'
#' @name PrepareILoReg
#'
#' @return an object of \code{SingleCellExperiment} class
#'
#' @keywords prepare iloreg clean normalized data
#'
#' @importFrom SummarizedExperiment colData colData<- rowData rowData<- assayNames
#' @importFrom S4Vectors metadata metadata<-
#' @importFrom Matrix rowSums Matrix
#' @importFrom SingleCellExperiment logcounts logcounts<-
#' @importFrom methods is
#'
#' @examples
#' library(SingleCellExperiment)
#' sce <- SingleCellExperiment(assays = list(logcounts = pbmc3k_500))
#' sce <- PrepareILoReg(sce)
#'
PrepareILoReg.SingleCellExperiment <- function(object) {

  # Check that there are data in `logcounts` slot
  if (!("logcounts" %in% assayNames(object))) {
    stop(paste("`Error: `logcounts` slot is missing from your ",
               "SingleCellExperiment object. This can be any kind of ",
               "normalized data matrix. Set it by executing ",
               "logcounts(object) <- norm_data",sep = ""))
    return(object)
  }

  # Remove duplicate features from the data in `logcounts` slot
  if (sum(duplicated(rownames(object))) != 0) {
    features_before <- length(rownames(object))
    object <- object[!duplicated(rownames(object)), ]
    features_after <- length(rownames(object))
    message(paste("data in SingleCellExperiment object contained duplicate ",
                  " features. ", features_before - features_after,
                  "/", features_before, " were filtered out."))
  }

  # Convert the data in `logcounts` slot into object of `dgCMatrix` class.
  if (is(logcounts(object), "matrix")) {
    logcounts(object) <- Matrix(logcounts(object),sparse = TRUE)
    message(paste("Converting object of `matrix` class into `dgCMatrix`.",
                  " Please note that ILoReg has been designed to work with ",
                  "sparse data, i.e. data with ",
                  "a high proportion of zero values! Dense data will likely " ,
                  "increase run time and memory usage drastically!",sep=""))
  }
  else if (is(logcounts(object), "data.frame")) {
    logcounts(object) <- Matrix(as.matrix(logcounts(object)),sparse = TRUE)
    message(paste("Converting object of `data.frame` class into `dgCMatrix`.",
                  " Please note that ILoReg has been designed to work with ",
                  "sparse data, i.e. data with ",
                  "a high proportion of zero values!",sep = ""))
  }
  else if (is(logcounts(object), "dgCMatrix")) {
    message("Data in `logcounts` slot already of `dgCMatrix` class...")
  }
  else {
    stop("Error: Data in `logcounts` slot is not of `matrix`, `data.frame` ",
         "or `dgCMatrix` class.")
    return(object)
  }

  # Filter genes that are not expressed in any of the cells
  genes_before_filtering <- nrow(object)
  non_expressing_genes <- rownames(object)[rowSums(logcounts(object)) != 0]
  object <- object[non_expressing_genes,]
  genes_after_filtering <- nrow(object)
  message(paste(genes_after_filtering,"/",genes_before_filtering,
                " genes remain after filtering genes with only zero values.",
                sep = ""))

  # Create a place into `metadata`` slot for the data from ILoReg
  metadata(object)$iloreg <- list()

  return(object)
}

#' @rdname PrepareILoReg
#' @aliases PrepareILoReg
setMethod("PrepareILoReg", signature(object = "SingleCellExperiment"),
          PrepareILoReg.SingleCellExperiment)

#' @title Run ICP runs parallerly
#'
#' @description
#' This functions runs in parallel \code{L} ICP runs, which is the computational
#' bottleneck of ILoReg. With ~ 3,000 cells this step should be completed
#' in ~ 2 h and ~ 1 h with 3 and 12 logical processors (threads), respectively.
#'
#' @param object An object of \code{SingleCellExperiment} class.
#' @param k A positive integer greater or equal to \code{2}, denoting
#' the number of clusters in Iterative Clustering Projection (ICP).
#' Decreasing \code{k} leads to smaller cell populations diversity
#' and vice versa. Default is \code{15}.
#' @param d A numeric greater than \code{0} and smaller than \code{1} that
#' determines how many cells \code{n} are down- or oversampled from each cluster
#' into the training data (\code{n=N/k*d}), where \code{N} is the total number
#' of cells, \code{k} is the number of clusters in ICP. Increasing above 0.3
#' leads greadually to smaller cell populations diversity.
#' Default is \code{0.3}.
#' @param L A positive integer greater than \code{1} denoting the number of
#' the ICP runs to run. Default is \code{200}. Increasing recommended with
#' a significantly larger sample size (tens of thousands of cells).
#' Default is \code{200}.
#' @param r A positive integer that denotes the number of reiterations
#' performed until the ICP algorithm stops.
#' Increasing recommended with a significantly larger sample size
#' (tens of thousands of cells). Default is \code{5}.
#' @param C A positive real number denoting the cost of constraints violation in
#' the L1-regularized logistic regression model from the LIBLINEAR library.
#' Decreasing leads to more stringent feature selection, i.e. less genes are
#' selected that are used to build the projection classifier. Decreasing to a
#' very low value (~ \code{0.01}) can lead to failure to identify central cell
#' populations. Default \code{0.3}.
#' @param reg.type "L1" or "L2". L2-regularization was not
#' investigated in the manuscript, but it leads to a more conventional
#' outcome (less subpopulations). Default is "L1".
#' @param max.iter A positive integer that denotes
#' the maximum number of iterations performed until ICP stops. This parameter
#' is only useful in situations where ICP converges extremely slowly, preventing
#' the algorithm to run too long. In most cases, reaching
#' the number of reiterations (\code{r=5}) terminates the algorithm.
#' Default is \code{200}.
#' @param threads A positive integer that specifies how many logical processors
#' (threads) to use in parallel computation.
#' Set \code{1} to disable parallelism altogether or \code{0} to use all
#' available threas except one. Default is \code{0}.
#' @param icp.batch.size A positive integer that specifies how many cells 
#' to randomly select for each ICP run from the complete data set. 
#' This is a new feature intended to speed up the process
#' with larger data sets. Default is \code{Inf}, which means using all cells.
#'
#' @name RunParallelICP
#'
#' @return an object of \code{SingleCellExperiment} class
#'
#' @keywords iterative clustering projection ICP logistic regression LIBLINEAR
#'
#' @importFrom parallel makeCluster detectCores stopCluster
#' @importFrom foreach foreach %dopar%
#' @importFrom doRNG %dorng%
#' @importFrom S4Vectors metadata metadata<-
#' @importFrom utils txtProgressBar setTxtProgressBar
#' @importFrom doSNOW registerDoSNOW
#' @import Matrix
#' @import aricode
#' @import LiblineaR
#' @import SparseM
#' @importFrom SingleCellExperiment logcounts
#' @importFrom methods is
#'
#' @examples
#' library(SingleCellExperiment)
#' sce <- SingleCellExperiment(assays = list(logcounts = pbmc3k_500))
#' sce <- PrepareILoReg(sce)
#' ## These settings are just to accelerate the example, use the defaults.
#' sce <- RunParallelICP(sce,L=2,threads=1,C=0.1,r=1,k=5)
#'
RunParallelICP.SingleCellExperiment <- function(object, k, d, L, r, C,
                                                reg.type, max.iter,
                                                threads,icp.batch.size){

  if (!is(object,"SingleCellExperiment")) {
    stop("object must of 'sce' class")
    return(object)
  }

  if (!is.numeric(k) | k < 2 | k%%1 != 0)
  {
    stop("k must be a positive integer and greater than 1")
  } else {
    metadata(object)$iloreg$k <- k
  }

  if (!is.numeric(d) | d >= 1 | d <= 0)
  {
    stop("d must be a numeric and in the range of (0,1)")
  } else {
    metadata(object)$iloreg$d <- d
  }

  if (!is.numeric(L) | L <= 0 | L%%1!=0)
  {
    stop("L must be a positive integer and greater than 0")
  } else {
    metadata(object)$iloreg$L <- L
  }

  if (!is.numeric(r) | r <= 0 | r%%1!=0)
  {
    stop("r must be a positive integer and greater than 0")
  } else {
    metadata(object)$iloreg$r <- r
  }

  if (!is.numeric(C) | C <= 0)
  {
    stop("C must be a numeric and greater than 0")
  } else {
    metadata(object)$iloreg$C <- C
  }

  if (!is.character(reg.type) | (reg.type != "L1" & reg.type != "L2"))
  {
    stop("reg.type parameter must be either 'L1' or 'L2'")
  } else {
    metadata(object)$iloreg$reg.type <- reg.type
  }

  if (!is.numeric(max.iter) | max.iter <= 0 | max.iter%%1 != 0)
  {
    stop("max.iter must be a positive integer and greater than 0")
  } else {
    metadata(object)$iloreg$max.iter <- max.iter
  }

  if (!is.numeric(threads) | threads < 0 | threads%%1 != 0)
  {
    stop("threads must be a positive integer or 0 (0 = use all available - 1)")
  } else {
    metadata(object)$iloreg$threads <- threads
  }
  
  

  if (!is.infinite(icp.batch.size))
  {
    if (!is.numeric(icp.batch.size) | icp.batch.size <= 2 | icp.batch.size%%1 != 0)
    {
      stop("icp.batch.size must be a positive integer > 2 or Inf (0 = use all cells in ICP)")
    } else {
      metadata(object)$iloreg$icp.batch.size <- icp.batch.size
    }
    
  }
  
  

  parallelism <- TRUE

  if (threads == 0) {
    cl <- makeCluster(detectCores(logical=TRUE)-1)
    # registerDoParallel(cl)
    registerDoSNOW(cl)
  } else if(threads == 1) {
    message("Parallelism disabled, because threads = 1")
    parallelism <- FALSE
  } else {
    cl<-makeCluster(threads)
    # registerDoParallel(cl)
    registerDoSNOW(cl)
  }

  dataset <- logcounts(object)

  if (parallelism) {
    pb <- txtProgressBar(min = 1, max = L, style = 3)
    progress <- function(n) setTxtProgressBar(pb, n)
    opts <- list(progress = progress)
    out <- foreach(task = seq_len(L),
                   .verbose = FALSE,
                   .combine = list,
                   .maxcombine = 1000,
                   .inorder = FALSE,
                   .multicombine = TRUE,
                   .options.snow = opts)  %dorng% {
                     try({
                       RunICP(normalized.data = dataset, k = k, d = d, r = r,
                              C = C, reg.type = reg.type, max.iter = max.iter,
                              icp.batch.size=icp.batch.size)
                     })
                   }
    close(pb)
    # stop local cluster
    stopCluster(cl)

  } else {
    out <- list()
    for (l in seq_len(L)) {
      try({
        message(paste0("ICP run: ",l))
        res <- RunICP(normalized.data = dataset, k = k, d = d, r = r,
                      C = C, reg.type = reg.type, max.iter = max.iter,
                      icp.batch.size=icp.batch.size)
        out[[l]] <- res
      })
    }
  }
  metadata(object)$iloreg$joint.probability <-
    lapply(out,function(x) x$probabilities)
  
  sds <- unlist(lapply(metadata(object)$iloreg$joint.probability,sd))
  
  metadata(object)$iloreg$joint.probability <-
    metadata(object)$iloreg$joint.probability[order(sds)]
  
  metadata(object)$iloreg$metrics <-
    lapply(out,function(x) x$metrics)

  return(object)
}
#' @rdname RunParallelICP
#' @aliases RunParallelICP
setMethod("RunParallelICP", signature(object = "SingleCellExperiment"),
          RunParallelICP.SingleCellExperiment)


#' @title PCA transformation of the joint probability matrix
#'
#' @description
#' Perform the PCA transformation of the joint probability matrix,
#' which reduces the dimensionality from k*L to p
#'
#' @param object object of \code{SingleCellExperiment} class
#' @param p a positive integer denoting the number of principal
#' components to calculate and select. Default is \code{50}.
#' @param scale a logical specifying whether the probabilities should be
#' standardized to unit-variance before running PCA. Default is \code{FALSE}.
#' @param threshold a thresfold for filtering out ICP runs before PCA with
#' the lower terminal projection accuracy below the threshold.
#' Default is \code{0}.
#'
#' @name RunPCA
#'
#' @return object of \code{SingleCellExperiment} class
#'
#' @keywords PCA eigendecomposition
#'
#' @importFrom RSpectra eigs_sym
#' @importFrom SingleCellExperiment reducedDim<-
#' @importFrom S4Vectors metadata metadata<-
#'
#' @examples
#' library(SingleCellExperiment)
#' sce <- SingleCellExperiment(assays = list(logcounts = pbmc3k_500))
#' sce <- PrepareILoReg(sce)
#' ## These settings are just to accelerate the example, use the defaults.
#' sce <- RunParallelICP(sce,L=2,threads=1,C=0.1,k=5,r=1)
#' sce <- RunPCA(sce,p=5)
#'
#'
RunPCA.SingleCellExperiment <- function(object, p, scale, threshold) {

  if (p > metadata(object)$iloreg$L*metadata(object)$iloreg$k) {
    stop(paste0("p larger than number of joint probabilities. Decrease p"))
  }

  metadata(object)$iloreg$p <- p
  metadata(object)$iloreg$scale.pca <- scale

  if (threshold == 0)
  {
    X <- do.call(cbind,metadata(object)$iloreg$joint.probability)
  } else {
    icp_runs_logical <- unlist(lapply(metadata(object)$iloreg$metrics,
                                      function(x) x["ARI",])) >= threshold
    X <- do.call(cbind,
                 metadata(object)$iloreg$joint.probability[icp_runs_logical])
  }
  X <- scale(X, scale = scale, center = TRUE)

  # X^T %*% X
  A = crossprod(X)

  # Perform eigendecomposition
  eigs_sym_out <- eigs_sym(A, p, which = "LM")

  rotated <- X %*% eigs_sym_out$vectors
  colnames(rotated) <- paste0("PC", seq_len(ncol(rotated)))

  reducedDim(object,type = "PCA") <- rotated

  return(object)

}

#' @rdname RunPCA
#' @aliases RunPCA
setMethod("RunPCA", signature(object = "SingleCellExperiment"),
          RunPCA.SingleCellExperiment)



#' @title Elbow plot of the standard deviations of the principal components
#'
#' @description
#' Draw an elbow plot of the standard deviations of the principal components
#' to deduce an appropriate value for p.
#'
#' @param object object of class 'iloreg'
#' @param return.plot logical indicating if the ggplot2 object
#' should be returned (default FALSE)
#'
#' @name PCAElbowPlot
#'
#' @return ggplot2 object if return.plot=TRUE
#'
#' @keywords PCA elbow plot
#'
#' @import ggplot2
#' @importFrom reshape2 melt
#' @importFrom SingleCellExperiment reducedDim
#' @importFrom S4Vectors metadata metadata<-
#' @importFrom stats sd
#'
#' @examples
#' library(SingleCellExperiment)
#' sce <- SingleCellExperiment(assays = list(logcounts = pbmc3k_500))
#' sce <- PrepareILoReg(sce)
#' ## These settings are just to accelerate the example, use the defaults.
#' sce <- RunParallelICP(sce,L=2,threads=1,C=0.1,k=5,r=1)
#' sce <- RunPCA(sce,p=5)
#' PCAElbowPlot(sce)
#'
PCAElbowPlot.SingleCellExperiment <- function(object, return.plot) {

  df <- matrix(apply(reducedDim(object,"PCA"),2,sd),
               nrow = metadata(object)$iloreg$p,
               ncol = 1,
               dimnames =
                 list(seq_len(metadata(object)$iloreg$p),"SD"))
  df <- melt(df)

  p <- ggplot(df, aes_string(x = 'Var1', y = 'value')) +
    geom_line(color = "blue") +
    geom_point(color = "black") +
    theme_bw() +
    ylab("Standard Deviation") +
    xlab("PC")

  if (return.plot) {
    return(p)
  } else {
    print(p)
  }
}

#' @rdname PCAElbowPlot
#' @aliases PCAElbowPlot
setMethod("PCAElbowPlot", signature(object = "SingleCellExperiment"),
          PCAElbowPlot.SingleCellExperiment)


#' @title Uniform Manifold Approximation and Projection (UMAP)
#'
#' @description
#' Run nonlinear dimensionality reduction using UMAP with
#' the PCA-transformed consensus matrix as input.
#'
#' @param object of \code{SingleCellExperiment} class
#'
#' @name RunUMAP
#'
#' @return object of \code{SingleCellExperiment} class
#'
#' @keywords Uniform Manifold Approximation and Projection UMAP
#'
#' @importFrom umap umap
#' @importFrom SingleCellExperiment reducedDim reducedDim<-
#'
#' @examples
#' library(SingleCellExperiment)
#' sce <- SingleCellExperiment(assays = list(logcounts = pbmc3k_500))
#' sce <- PrepareILoReg(sce)
#' ## These settings are just to accelerate the example, use the defaults.
#' sce <- RunParallelICP(sce,L=2,threads=1,C=0.1,k=5,r=1)
#' sce <- RunPCA(sce,p=5)
#' sce <- RunUMAP(sce)
#'
RunUMAP.SingleCellExperiment <- function(object) {

  umap_out <- umap(reducedDim(object,"PCA"))

  reducedDim(object,"UMAP") <- umap_out$layout

  return(object)
}

#' @rdname RunUMAP
#' @aliases RunUMAP
setMethod("RunUMAP", signature(object = "SingleCellExperiment"),
          RunUMAP.SingleCellExperiment)


#' @title Barnes-Hut implementation of t-Distributed Stochastic
#' Neighbor Embedding (t-SNE)
#'
#' @description
#' Run nonlinear dimensionality reduction using t-SNE with the
#' PCA-transformed consensus matrix as input.
#'
#' @param object of \code{SingleCellExperiment} class
#' @param perplexity perplexity of t-SNE
#'
#' @name RunTSNE
#'
#' @return object of \code{SingleCellExperiment} class
#'
#' @keywords Barnes-Hut implementation of t-Distributed
#' Stochastic Neighbor Embedding t-SNE
#'
#' @importFrom Rtsne Rtsne
#' @importFrom SingleCellExperiment reducedDim reducedDim<-
#'
#' @examples
#' library(SingleCellExperiment)
#' sce <- SingleCellExperiment(assays = list(logcounts = pbmc3k_500))
#' sce <- PrepareILoReg(sce)
#' ## These settings are just to accelerate the example, use the defaults.
#' sce <- RunParallelICP(sce,L=2,threads=1,C=0.1,k=5,r=1)
#' sce <- RunPCA(sce,p=5)
#' sce <- RunTSNE(sce)
#'
RunTSNE.SingleCellExperiment <- function(object, perplexity) {

  rtsne_out <- Rtsne(reducedDim(object,"PCA"),
                     is_distance=FALSE,
                     perplexity=perplexity,
                     pca=FALSE)

  reducedDim(object,"TSNE") <- rtsne_out$Y

  return(object)
}

#' @rdname RunTSNE
#' @aliases RunTSNE
setMethod("RunTSNE", signature(object = "SingleCellExperiment"),
          RunTSNE.SingleCellExperiment)



#' @title Hierarchical clustering using the Ward's method
#'
#' @description
#' Perform Hierarchical clustering using the Ward's method.
#'
#' @param object of \code{SingleCellExperiment} class
#'
#' @name HierarchicalClustering
#'
#' @return object of \code{SingleCellExperiment} class
#'
#' @keywords ward hierarchical clustering
#'
#' @importFrom fastcluster hclust.vector
#' @importFrom S4Vectors metadata<-
#' @importFrom SingleCellExperiment reducedDim
#'
#' @examples
#' library(SingleCellExperiment)
#' sce <- SingleCellExperiment(assays = list(logcounts = pbmc3k_500))
#' sce <- PrepareILoReg(sce)
#' ## These settings are just to accelerate the example, use the defaults.
#' sce <- RunParallelICP(sce,L=2,threads=1,C=0.1,k=5,r=1)
#' sce <- RunPCA(sce,p=5)
#' sce <- HierarchicalClustering(sce)
#'
HierarchicalClustering.SingleCellExperiment <- function(object) {

  hc <- hclust.vector(reducedDim(object,"PCA"), method = "ward")

  metadata(object)$iloreg$hc <- hc

  return(object)
}

#' @rdname HierarchicalClustering
#' @aliases HierarchicalClustering
setMethod("HierarchicalClustering", signature(object = "SingleCellExperiment"),
          HierarchicalClustering.SingleCellExperiment)


#' @title Estimating optimal K using silhouette
#'
#' @description
#' The function estimates the optimal number of clusters K from the dendrogram
#' of the hierarhical clustering using the silhouette method.
#'
#' @param object of \code{SingleCellExperiment} class
#' @param K.start a numeric for the smallest
#' K value to be tested. Default is \code{2}.
#' @param K.end a numeric for the largest
#' K value to be tested. Default is \code{50}.
#'
#' @name CalcSilhInfo
#'
#' @return object of \code{SingleCellExperiment} class
#'
#' @keywords ward hierarchical clustering
#'
#' @importFrom S4Vectors metadata<- metadata
#' @importFrom parallelDist parDist
#' @importFrom cluster silhouette
#' @importFrom dendextend cutree
#' @importFrom stats as.dendrogram
#'
#' @examples
#' library(SingleCellExperiment)
#' sce <- SingleCellExperiment(assays = list(logcounts = pbmc3k_500))
#' sce <- PrepareILoReg(sce)
#' ## These settings are just to accelerate the example, use the defaults.
#' sce <- RunParallelICP(sce,L=2,threads=1,C=0.1,k=5,r=1)
#' sce <- RunPCA(sce,p=5)
#' sce <- HierarchicalClustering(sce)
#' sce <- CalcSilhInfo(sce)
#'
CalcSilhInfo.SingleCellExperiment <-
  function(object, K.start, K.end) {

    distance_matrix <- parDist(reducedDim(object,"PCA"),
                               method = "euclidean", threads = 1)
    distance_matrix <- as.matrix(distance_matrix)
    sis <- c()
    for (k in seq(K.start,K.end,1))
    {
      clustering <- cutree(metadata(object)$iloreg$hc,k=k)

      si <- silhouette(clustering,dmatrix = distance_matrix)
      avgsi <- summary(si)$avg.width
      sis <- c(sis,avgsi)
    }
    # Select optimal K and cluster the data
    k_optimal <- which.max(sis)+1

    message(paste0("optimal K: ",
                   k_optimal,
                   ", average silhouette score: ",
                   sis[which.max(sis)]))

    clustering <- factor(cutree(as.dendrogram(metadata(object)$iloreg$hc),
                                k = k_optimal))
    names(clustering) <- colnames(object)

    metadata(object)$iloreg$clustering.optimal <- clustering
    metadata(object)$iloreg$K.optimal <- k_optimal

    names(sis) <- seq(K.start,K.end,1)
    metadata(object)$iloreg$silhouette.information <- sis

    return(object)
  }

#' @rdname CalcSilhInfo
#' @aliases CalcSilhInfo
setMethod("CalcSilhInfo", signature(object = "SingleCellExperiment"),
          CalcSilhInfo.SingleCellExperiment)

#' @title Silhouette curve
#'
#' @description
#' Draw the silhouette curve: the average silhouette value across
#' the cells for a range of different K values.
#'
#' @param object of \code{SingleCellExperiment} class
#' @param return.plot a logical denoting whether the ggplot2 object
#' should be returned. Default is \code{FALSE}.
#'
#' @name SilhouetteCurve
#'
#' @return ggplot2 object if return.plot=TRUE
#'
#' @keywords ward hierarchical clustering
#'
#' @importFrom S4Vectors metadata
#' @import ggplot2
#' @importFrom DescTools AUC
#'
#' @examples
#' library(SingleCellExperiment)
#' sce <- SingleCellExperiment(assays = list(logcounts = pbmc3k_500))
#' sce <- PrepareILoReg(sce)
#' ## These settings are just to accelerate the example, use the defaults.
#' sce <- RunParallelICP(sce,L=2,threads=1,C=0.1,k=5,r=1)
#' sce <- RunPCA(sce,p=5)
#' sce <- HierarchicalClustering(sce)
#' sce <- CalcSilhInfo(sce)
#' SilhouetteCurve(sce)
#'
SilhouetteCurve.SingleCellExperiment <- function(object, return.plot) {

  sis <- metadata(object)$iloreg$silhouette.information
  df <- data.frame(cbind(names(sis),sis),
                   stringsAsFactors = FALSE)
  colnames(df) <- c("K","AvgSilhouette")
  df$AvgSilhouette <- as.numeric(df$AvgSilhouette)
  df$K <- as.numeric(df$K)

  auc <- round(AUC(df$K,df$AvgSilhouette),3)

  p<-ggplot(df, aes_string(x='K', y='AvgSilhouette')) +
    geom_line(color="red")+
    geom_point(color="black")+
    ylab("Average silhouette")+
    theme_bw() +
    ggtitle(paste0("AUSC=",auc))

  if (return.plot)
  {
    return(p)
  } else {
    print(p)
  }
}

#' @rdname SilhouetteCurve
#' @aliases SilhouetteCurve
setMethod("SilhouetteCurve", signature(object = "SingleCellExperiment"),
          SilhouetteCurve.SingleCellExperiment)

#' @title Selecting K clusters from hierarchical clustering
#'
#' @description
#' Selects K clusters from the dendrogram.
#'
#' @param object of \code{SingleCellExperiment} class
#' @param K a positive integer denoting how many clusters to select
#'
#' @name SelectKClusters
#'
#' @return object of \code{SingleCellExperiment} class
#'
#' @keywords select clusters
#'
#' @importFrom S4Vectors metadata metadata<-
#' @importFrom dendextend cutree
#'
#' @examples
#' library(SingleCellExperiment)
#' sce <- SingleCellExperiment(assays = list(logcounts = pbmc3k_500))
#' sce <- PrepareILoReg(sce)
#' ## These settings are just to accelerate the example, use the defaults.
#' sce <- RunParallelICP(sce,L=2,threads=1,C=0.1,k=5,r=1)
#' sce <- RunPCA(sce,p=5)
#' sce <- HierarchicalClustering(sce)
#' sce <- SelectKClusters(sce,K=5)
#'
SelectKClusters.SingleCellExperiment <- function(object, K) {

  clustering <- factor(cutree(as.dendrogram(metadata(object)$iloreg$hc),k=K))
  names(clustering) <- colnames(object)

  metadata(object)$iloreg$clustering.manual <- clustering
  metadata(object)$iloreg$K.manual <- K

  return(object)

}

#' @rdname SelectKClusters
#' @aliases SelectKClusters
setMethod("SelectKClusters", signature(object = "SingleCellExperiment"),
          SelectKClusters.SingleCellExperiment)

#' @title Merge clusters
#'
#' @description
#' MergeClusters function enables merging clusters and naming the newly
#' formed cluster.
#'
#' @param object of \code{SingleCellExperiment} class
#' @param clusters.to.merge a character or numeric vector for the names of
#' the clusters to merge
#' @param new.name a character for the new name of the merged cluster.
#' If left empty, the new cluster name is formed by separating
#' the cluster names by "_".
#'
#' @name MergeClusters
#'
#' @return object of \code{SingleCellExperiment} class
#'
#' @keywords merge clusters
#'
#' @importFrom S4Vectors metadata metadata<-
#'
#' @examples
#' library(SingleCellExperiment)
#' sce <- SingleCellExperiment(assays = list(logcounts = pbmc3k_500))
#' sce <- PrepareILoReg(sce)
#' ## These settings are just to accelerate the example, use the defaults.
#' sce <- RunParallelICP(sce,L=2,threads=1,C=0.1,k=5,r=1)
#' sce <- RunPCA(sce,p=5)
#' sce <- HierarchicalClustering(sce)
#' sce <- SelectKClusters(sce,K=5)
#' sce <- MergeClusters(sce,clusters.to.merge=c(1,2),new.name="merged1")
#'
MergeClusters.SingleCellExperiment <- function(object,
                                               clusters.to.merge,
                                               new.name) {

  clusters.to.merge <- as.character(clusters.to.merge)

  clustering_old <- metadata(object)$iloreg$clustering.manual
  clusters_old <- levels(clustering_old)

  if (sum(clusters.to.merge %in% clusters_old)!=length(clusters.to.merge))
  {
    stop("invalid `clusters.to.merge argument`")
    return(object)
  }

  if (new.name=="")
  {
    new_cluster_name <- paste(clusters.to.merge,collapse = ",")
  } else {
    new_cluster_name <- new.name
  }

  clustering_new <- as.character(clustering_old)
  clustering_new[clustering_new %in% clusters.to.merge] <- new_cluster_name

  clustering_new <- factor(clustering_new)
  names(clustering_new) <- names(clustering_old)

  metadata(object)$iloreg$clustering.manual <- clustering_new
  metadata(object)$iloreg$K.manual <- length(levels(clustering_new))

  return(object)

}

#' @rdname MergeClusters
#' @aliases MergeClusters
setMethod("MergeClusters", signature(object = "SingleCellExperiment"),
          MergeClusters.SingleCellExperiment)

#' @title Renaming all clusters at once
#'
#' @description
#' RenameAllClusters function enables renaming all cluster at once.
#'
#' @param object of \code{SingleCellExperiment} class
#' @param new.cluster.names object of class 'iloreg'
#'
#' @name RenameAllClusters
#'
#' @return object of \code{SingleCellExperiment} class
#'
#' @keywords rename all clusters
#'
#' @importFrom S4Vectors metadata metadata<-
#' @importFrom plyr mapvalues
#'
#' @examples
#' library(SingleCellExperiment)
#' sce <- SingleCellExperiment(assays = list(logcounts = pbmc3k_500))
#' sce <- PrepareILoReg(sce)
#' ## These settings are just to accelerate the example, use the defaults.
#' sce <- RunParallelICP(sce,L=2,threads=1,C=0.1,k=5,r=1)
#' sce <- RunPCA(sce,p=5)
#' sce <- HierarchicalClustering(sce)
#' sce <- SelectKClusters(sce,K=5)
#' sce <- RenameAllClusters(sce,new.cluster.names=LETTERS[seq_len(5)])
#'
RenameAllClusters.SingleCellExperiment <- function(object, new.cluster.names) {

  new.cluster.names <- as.character(new.cluster.names)

  clustering_old <- metadata(object)$iloreg$clustering.manual
  clusters_old <- levels(clustering_old)

  if (length(clusters_old) != length(new.cluster.names))
  {
    stop(paste0("number of elements in clusters.to.merge is ",
                "unqual to the current number of clusters"))
    return(object)
  }

  clustering_new <- mapvalues(clustering_old,clusters_old,new.cluster.names)

  metadata(object)$iloreg$clustering.manual <- clustering_new

  return(object)

}

#' @rdname RenameAllClusters
#' @aliases RenameAllClusters
setMethod("RenameAllClusters", signature(object = "SingleCellExperiment"),
          RenameAllClusters.SingleCellExperiment)

#' @title Renaming one cluster
#'
#' @description
#' RenameCluster function enables renaming
#' a cluster in `clustering.manual` slot.
#'
#' @param object of \code{SingleCellExperiment} class
#' @param old.cluster.name a character variable denoting  the
#' old name of the cluster
#' @param new.cluster.name a character variable the
#' new name of the cluster
#'
#' @name RenameCluster
#'
#' @return object of \code{SingleCellExperiment} class
#'
#' @keywords rename one cluster
#'
#' @importFrom S4Vectors metadata metadata<-
#'
#' @examples
#' library(SingleCellExperiment)
#' sce <- SingleCellExperiment(assays = list(logcounts = pbmc3k_500))
#' sce <- PrepareILoReg(sce)
#' ## These settings are just to accelerate the example, use the defaults.
#' sce <- RunParallelICP(sce,L=2,threads=1,C=0.1,k=5,r=1)
#' sce <- RunPCA(sce,p=5)
#' sce <- HierarchicalClustering(sce)
#' sce <- SelectKClusters(sce,K=5)
#' sce <- RenameCluster(sce,1,"cluster1")
#'
RenameCluster.SingleCellExperiment <- function(object,
                                               old.cluster.name,
                                               new.cluster.name) {

  old.cluster.name <- as.character(old.cluster.name)
  new.cluster.name <- as.character(new.cluster.name)

  if (old.cluster.name=="" | new.cluster.name=="")
  {
    stop("'old.cluster.name' or 'new.cluster.name' empty\n")
  }

  clustering_old <- metadata(object)$iloreg$clustering.manual
  clusters_old <- levels(clustering_old)
  clustering_old <- as.character(clustering_old)
  names(clustering_old) <- colnames(object)

  if (!(old.cluster.name %in% clusters_old))
  {
    stop("'old.cluster.name' unvalid cluster name\n")
  }

  clustering_new <- clustering_old
  clustering_new[clustering_new==old.cluster.name] <- new.cluster.name

  clustering_new <- factor(clustering_new)
  names(clustering_new) <- names(clustering_old)

  metadata(object)$iloreg$clustering.manual <- clustering_new

  return(object)

}

#' @rdname RenameCluster
#' @aliases RenameCluster
setMethod("RenameCluster", signature(object = "SingleCellExperiment"),
          RenameCluster.SingleCellExperiment)

#' @title Visualize gene expression over nonlinear dimensionality reduction
#'
#' @description
#' GeneScatterPlot enables visualizing gene expression of a gene over
#' nonlinear dimensionality reduction with t-SNE or UMAP.
#'
#' @param object of \code{SingleCellExperiment} class
#' @param genes a character vector of the genes to be visualized
#' @param return.plot whether to return the ggplot2 object or just
#' draw it (default \code{FALSE})
#' @param dim.reduction.type "tsne" or "umap" (default "tsne")
#' @param point.size point size (default 0.7)
#' @param title text to write above the plot
#' @param plot.expressing.cells.last whether to plot the expressing genes
#' last to make the points more visible
#' @param nrow a positive integer that specifies the number of rows in
#' the plot grid. Default is \code{NULL}.
#' @param ncol a positive integer that specifies the number of columns
#' in the plot grid. Default is \code{NULL}.
#'
#' @name GeneScatterPlot
#'
#' @return ggplot2 object if return.plot=TRUE
#'
#' @keywords gene scatter plot visualization
#'
#' @importFrom SingleCellExperiment reducedDim logcounts
#' @importFrom S4Vectors metadata metadata<-
#' @import ggplot2
#' @importFrom scales muted
#' @importFrom cowplot plot_grid
#'
#' @examples
#' library(SingleCellExperiment)
#' sce <- SingleCellExperiment(assays = list(logcounts = pbmc3k_500))
#' sce <- PrepareILoReg(sce)
#' ## These settings are just to accelerate the example, use the defaults.
#' sce <- RunParallelICP(sce,L=2,threads=1,C=0.1,k=5,r=1)
#' sce <- RunPCA(sce,p=5)
#' sce <- RunTSNE(sce)
#' GeneScatterPlot(sce,"CD14",dim.reduction.type="tsne")
#' sce <- RunUMAP(sce)
#' GeneScatterPlot(sce,"CD14",dim.reduction.type="umap")
#'
GeneScatterPlot.SingleCellExperiment <- function(object,
                                                 genes,
                                                 return.plot,
                                                 dim.reduction.type,
                                                 point.size,
                                                 title,
                                                 plot.expressing.cells.last,
                                                 nrow,
                                                 ncol) {

  if (dim.reduction.type=="umap")
  {
    two.dim.data <- reducedDim(object,"UMAP")
    xlab <- "UMAP_1"
    ylab <- "UMAP_2"
  } else if (dim.reduction.type=="tsne"){
    two.dim.data <- reducedDim(object,"TSNE")
    xlab <- "tSNE_1"
    ylab <- "tSNE_2"
  } else {
    stop("dim.reduction.type must be either 'tsne' or 'umap'")
  }

  if (length(genes)==1)
  {

    df <- as.data.frame(two.dim.data)

    if (!(genes %in% rownames(object)))
    {
      stop("invalid gene name")
    }

    color.by <- logcounts(object)[genes,]
    df$group <- color.by
    colnames(df) <- c("dim1","dim2","group")

    if (title=="")
    {

      if (plot.expressing.cells.last)
      {
        df <- df[order(df$group,decreasing = FALSE),]
      }
      p<-ggplot(df, aes_string(x='dim1', y='dim2')) +
        geom_point(size=point.size,aes_string(color='group')) +
        scale_colour_gradient2(low = muted("red"), mid = "lightgrey",
                               high = "blue",name = genes) +
        xlab(xlab) +
        ylab(ylab) +
        theme(panel.grid.major = element_blank(),
              panel.grid.minor = element_blank(),
              panel.background = element_blank(),
              axis.line = element_line(colour = "black"))


    } else {
      p<-ggplot(df, aes_string(x='dim1', y='dim2')) +
        geom_point(size=point.size,aes_string(color='group')) +
        scale_colour_gradient2(low = muted("red"), mid = "lightgrey",
                               high = "blue",name = genes) +
        xlab(xlab) +
        ylab(ylab) +
        theme(panel.grid.major = element_blank(),
              panel.grid.minor = element_blank(),
              panel.background = element_blank(),
              axis.line = element_line(colour = "black")) +
        ggtitle(title) +
        theme(plot.title = element_text(hjust = 0.5))

    }
    if (return.plot) {
      return(p)
    } else {
      print(p)
    }

  } else {

    plot_list <- list()
    for (gene in genes)
    {
      df <- as.data.frame(two.dim.data)

      if (!(gene %in% rownames(object)))
      {
        stop(paste0("invalid gene name: ",gene))
      }

      color.by <- logcounts(object)[gene,]
      df$group <- color.by
      colnames(df) <- c("dim1","dim2","group")

      if (plot.expressing.cells.last)
      {
        df <- df[order(df$group,decreasing = FALSE),]
      }

      if (title=="") {
        p<-ggplot(df, aes_string(x='dim1', y='dim2')) +
          geom_point(size=point.size,aes_string(color='group')) +
          scale_colour_gradient2(low = muted("red"), mid = "lightgrey",
                                 high = "blue",name = gene) +
          xlab(xlab) +
          ylab(ylab) +
          theme(panel.grid.major = element_blank(),
                panel.grid.minor = element_blank(),
                panel.background = element_blank(),
                axis.line = element_line(colour = "black"))
      } else {
        p<-ggplot(df, aes_string(x='dim1', y='dim2')) +
          geom_point(size=point.size,aes_string(color='group')) +
          scale_colour_gradient2(low = muted("red"), mid = "lightgrey",
                                 high = "blue",name = gene) +
          xlab(xlab) +
          ylab(ylab) +
          theme(panel.grid.major = element_blank(),
                panel.grid.minor = element_blank(),
                panel.background = element_blank(),
                axis.line = element_line(colour = "black")) +
          ggtitle(title) +
          theme(plot.title = element_text(hjust = 0.5))

      }

      plot_list[[gene]] <- p

    }

    p <- plot_grid(plotlist = plot_list,align = "hv",nrow = nrow, ncol = ncol)

    if (return.plot) {
      return(p)
    } else {
      print(p)
    }
  }

}

#' @rdname GeneScatterPlot
#' @aliases GeneScatterPlot
setMethod("GeneScatterPlot", signature(object = "SingleCellExperiment"),
          GeneScatterPlot.SingleCellExperiment)

#' @title Visualize the clustering over nonliner dimensionality reduction
#'
#' @description
#' ClusteringScatterPlot function enables visualizing the clustering over
#' nonliner dimensionality reduction (t-SNE or UMAP).
#'
#' @param object of \code{SingleCellExperiment} class
#' @param clustering.type "manual" or "optimal". "manual" refers to the
#' clustering formed using the "SelectKClusters" function and "optimal" to
#' the clustering formed using the "CalcSilhInfo" function.
#' Default is "manual".
#' @param return.plot a logical denoting whether to return the ggplot2 object.
#' Default is \code{FALSE}.
#' @param dim.reduction.type "tsne" or "umap". Default is "tsne".
#' @param point.size point size. Default is Default is \code{0.7}.
#' @param title text to write above the plot
#' @param show.legend whether to show the legend on the right side of the plot.
#' Default is \code{TRUE}.
#'
#' @name ClusteringScatterPlot
#'
#' @return ggplot2 object if return.plot=TRUE
#'
#' @keywords clustering scatter plot nonlinear dimensionality reduction
#'
#' @importFrom SingleCellExperiment reducedDim
#' @importFrom S4Vectors metadata metadata<-
#' @import ggplot2
#' @importFrom stats median
#'
#' @examples
#' library(SingleCellExperiment)
#' sce <- SingleCellExperiment(assays = list(logcounts = pbmc3k_500))
#' sce <- PrepareILoReg(sce)
#' ## These settings are just to accelerate the example, use the defaults.
#' sce <- RunParallelICP(sce,L=2,threads=1,C=0.1,k=5,r=1)
#' sce <- RunPCA(sce,p=5)
#' sce <- HierarchicalClustering(sce)
#' sce <- SelectKClusters(sce,K=5)
#' sce <- RunTSNE(sce)
#' ClusteringScatterPlot(sce,"manual",dim.reduction.type="tsne")
#' sce <- RunUMAP(sce)
#' ClusteringScatterPlot(sce,"manual",dim.reduction.type="umap")
#'
ClusteringScatterPlot.SingleCellExperiment <- function(object,
                                                       clustering.type,
                                                       return.plot,
                                                       dim.reduction.type,
                                                       point.size,
                                                       title,
                                                       show.legend) {

  if (dim.reduction.type=="umap")
  {
    two.dim.data <- reducedDim(object,"UMAP")
    xlab <- "UMAP_1"
    ylab <- "UMAP_2"
  } else if (dim.reduction.type=="tsne"){
    two.dim.data <- reducedDim(object,"TSNE")
    xlab <- "tSNE_1"
    ylab <- "tSNE_2"
  } else {
    stop("dim.reduction.type must be either 'tsne' or 'umap'")
  }

  if (clustering.type=="manual")
  {
    color.by <- metadata(object)$iloreg$clustering.manual
  } else if (clustering.type=="optimal")
  {
    color.by <- metadata(object)$iloreg$clustering.optimal
  } else {
    clustering <- metadata(object)$iloreg$clustering.manual
    message("clustering.type='manual'")
  }

  df <- as.data.frame(two.dim.data)

  df$cluster <- color.by
  colnames(df) <- c("dim1","dim2","cluster")

  two.dim.data_ <- two.dim.data
  rownames(two.dim.data_) <- names(color.by)
  cluster_centers <- lapply(levels(color.by),function(x) apply(two.dim.data_[names(color.by)[color.by==x],,drop=FALSE],2,median))
  cluster_centers <- do.call(rbind,cluster_centers)

  if (title == "")
  {
    p<-ggplot(df, aes_string(x='dim1', y='dim2')) +
      geom_point(size=point.size,aes_string(color='cluster')) +
      xlab(xlab) +
      ylab(ylab) +
      theme_classic() +
      annotate("text", x = cluster_centers[,1], y = cluster_centers[,2],
               label = levels(color.by))

  } else {

    p<-ggplot(df, aes_string(x='dim1', y='dim2')) +
      geom_point(size=point.size,aes_string(color='cluster')) +
      xlab(xlab) +
      ylab(ylab) +
      theme_classic() +
      annotate("text", x = cluster_centers[,1], y = cluster_centers[,2],
               label = levels(color.by)) +
      ggtitle(title) +
      theme(plot.title = element_text(hjust = 0.5))

  }

  if (!show.legend)
  {
    p <- p + theme(legend.position = "none")
  }

  if (return.plot) {
    return(p)
  } else {
    print(p)
  }

}

#' @rdname ClusteringScatterPlot
#' @aliases ClusteringScatterPlot
setMethod("ClusteringScatterPlot", signature(object = "SingleCellExperiment"),
          ClusteringScatterPlot.SingleCellExperiment)

#' @title identification of gene markers for all clusters
#'
#' @description
#' FindAllGeneMarkers enables identifying gene markers for all clusters at once.
#' This is done by differential expresission analysis where cells from one
#' cluster are compared against the cells from the rest of the clusters.
#' Gene and cell filters can be applied to accelerate
#' the analysis, but this might lead to missing weak signals.
#'
#' @param object of \code{SingleCellExperiment} class
#' @param clustering.type "manual" or "optimal". "manual" refers to the
#' clustering formed using the "SelectKClusters" function and "optimal"
#' to the clustering formed using the "CalcSilhInfo" function.
#' Default is "manual".
#' @param test Which test to use. Only "wilcoxon" (the Wilcoxon rank-sum test,
#' AKA Mann-Whitney U test) is supported at the moment.
#' @param log2fc.threshold Filters out genes that have log2 fold-change of the
#' averaged gene expression values below this threshold.
#' Default is \code{0.25}.
#' @param min.pct Filters out genes that have dropout rate (fraction of cells
#' expressing a gene) below this threshold in both comparison groups
#' Default is \code{0.1}.
#' @param min.diff.pct Filters out genes that do not have this minimum
#' difference in the dropout rates (fraction of cells expressing a gene)
#' between the two comparison groups. Default is \code{NULL}.
#' @param min.cells.group The minimum number of cells in the two comparison
#' groups to perform the DE analysis. If the number of cells is below the
#' threshold, then the DE analysis of this cluster is skipped.
#' Default is \code{3}.
#' @param max.cells.per.cluster The maximun number of cells per cluster if
#' downsampling is performed to speed up the DE analysis.
#' Default is \code{NULL}, i.e. no downsampling.
#' @param return.thresh If only.pos=TRUE, then return only genes that have the
#' adjusted p-value (adjusted by the Bonferroni method) below or equal to this
#' threshold. Default is \code{0.01}.
#' @param only.pos Whether to return only genes that have an adjusted p-value
#' (adjusted by the Bonferroni method) below or equal to the threshold.
#' Default is \code{FALSE}.
#'
#' @name FindAllGeneMarkers
#'
#' @return a data frame of the results if positive results were found, else NULL
#'
#' @keywords differential expression DE analysis gene markers
#'
#' @importFrom S4Vectors metadata
#' @importFrom SingleCellExperiment logcounts
#' @importFrom stats wilcox.test p.adjust
#'
#' @examples
#' library(SingleCellExperiment)
#' sce <- SingleCellExperiment(assays = list(logcounts = pbmc3k_500))
#' sce <- PrepareILoReg(sce)
#' ## These settings are just to accelerate the example, use the defaults.
#' sce <- RunParallelICP(sce,L=2,threads=1,C=0.1,k=5,r=1)
#' sce <- RunPCA(sce,p=5)
#' sce <- HierarchicalClustering(sce)
#' sce <- SelectKClusters(sce,K=5)
#' gene_markers <- FindAllGeneMarkers(sce)
#'
FindAllGeneMarkers.SingleCellExperiment <- function(object,
                                                    clustering.type,
                                                    test,
                                                    log2fc.threshold,
                                                    min.pct,
                                                    min.diff.pct,
                                                    min.cells.group,
                                                    max.cells.per.cluster,
                                                    return.thresh,
                                                    only.pos) {

  number.of.expressed.genes <- nrow(object)

  if (clustering.type=="manual")
  {
    clustering <- metadata(object)$iloreg$clustering.manual
  } else if (clustering.type=="optimal")
  {
    clustering <- metadata(object)$iloreg$clustering.optimal
  } else {
    clustering <- metadata(object)$iloreg$clustering.manual
    cat("clustering.type='manual'")
  }

  data <- logcounts(object)

  clusters <- levels(clustering)

  # Downsample each cluster
  if (!is.null(max.cells.per.cluster))
  {
    cells_downsampled <- c()
    for (cluster in clusters)
    {
      cells_in_cluster <- table(clustering)[cluster]
      if (max.cells.per.cluster < cells_in_cluster)
      {
        inds <- sample(seq_len(cells_in_cluster),
                       size = max.cells.per.cluster,
                       replace = FALSE)
        names_cluster <- names(clustering[clustering==cluster])
        cells_downsampled <- c(cells_downsampled,names_cluster[inds])
      }
    }
    data <- data[,cells_downsampled]
    clustering <- clustering[cells_downsampled]
  }

  # Compare cells from each cluster against all other clusters
  results_list <- list()

  for (cluster in clusters)
  {
    cat("-----------------------------------\n")
    cat(paste0("testing cluster ",cluster,"\n"))
    # Extract data

    data_cluster <- data[,clustering==cluster]
    data_other <- data[,clustering!=cluster]

    # Skip if the number of cells in the test
    # or the reference set is lower than min.cells.group
    if (ncol(data_cluster) < min.cells.group | ncol(data_other) < min.cells.group)
    {
      cat("-----------------------------------\n")
      next
    }

    # min.pct filter
    genes.pct_cluster <- apply(data_cluster,1,function(x) sum(x!=0))/ncol(data_cluster)
    genes.pct_other <- apply(data_other,1,function(x) sum(x!=0))/ncol(data_other)

    genes_to_include <- rownames(data_cluster)[genes.pct_cluster>=min.pct | genes.pct_other >= min.pct]

    data_cluster <- data_cluster[genes_to_include,,drop=FALSE]
    data_other <- data_other[genes_to_include,,drop=FALSE]

    cat(paste0(nrow(data_cluster)," genes left after min.pct filtering\n"))
    if (nrow(data_cluster)==0)
    {
      cat("-----------------------------------\n")
      next
    }

    # min.diff.pct filter
    if (!is.null(min.diff.pct))
    {
      genes.pct_cluster <- genes.pct_cluster[genes_to_include]
      genes.pct_other <- genes.pct_other[genes_to_include]

      genes_to_include <- rownames(data_cluster)[abs(genes.pct_cluster-genes.pct_other) >= min.diff.pct]

      data_cluster <- data_cluster[genes_to_include,,drop=FALSE]
      data_other <- data_other[genes_to_include,,drop=FALSE]

    }

    cat(paste0(nrow(data_cluster)," genes left after min.diff.pct filtering\n"))
    if (nrow(data_cluster)==0)
    {
      cat("-----------------------------------\n")
      next
    }

    # logfc.threshold filter
    # Calculate log2 fold changes
    cluster_aves <- apply(data_cluster,1,mean)
    other_aves <- apply(data_other,1,mean)

    log2FC <- cluster_aves - other_aves
    
    genes_to_include <- rownames(data_cluster)[log2FC >= log2fc.threshold | log2FC <= -log2fc.threshold]

    data_cluster <- data_cluster[genes_to_include,,drop=FALSE]
    data_other <- data_other[genes_to_include,,drop=FALSE]


    cat(paste0(nrow(data_cluster)," genes left after log2fc.threshold filtering\n"))
    if (nrow(data_cluster)==0)
    {
      cat("-----------------------------------\n")
      next
    }

    # Run DE test

    if (test=="wilcox")
    {
      wilcox.res <- lapply(rownames(data_cluster),function(x) wilcox.test(x=data_cluster[x,],y=data_other[x,]))
      p_values <- unlist(lapply(wilcox.res,function(x) x$p.value))
      names(p_values) <- rownames(data_cluster)

      # Adjust p-values
      adj_p_values <- p.adjust(p_values, method = "bonferroni", n = number.of.expressed.genes)

      res <- cbind(p_values,adj_p_values,log2FC[names(p_values)],genes.pct_cluster[names(p_values)],genes.pct_other[names(p_values)],abs(genes.pct_cluster-genes.pct_other)[names(p_values)])
      colnames(res) <- c("p.value","adj.p.value","log2FC","pct.1","pct.2","diff.pct")
      res <- as.data.frame(res)
      res$cluster <- cluster
      res$gene <- names(p_values)
    }

    results_list[[cluster]] <- res

    cat("-----------------------------------\n")

  }

  results_df <- do.call(rbind,results_list)
  rownames(results_df) <- make.unique(unlist(lapply(results_list,rownames)))

  if(only.pos) {
    results_df <- results_df[results_df$adj.p.value <= return.thresh,]
    return(results_df)
  }
  return(results_df)

}

#' @rdname FindAllGeneMarkers
#' @aliases FindAllGeneMarkers
setMethod("FindAllGeneMarkers", signature(object = "SingleCellExperiment"),
          FindAllGeneMarkers.SingleCellExperiment)

#' @title Identification of gene markers for a cluster or two arbitrary
#' combinations of clusters
#'
#' @description
#' FindGeneMarkers enables identifying gene markers for one cluster or
#' two arbitrary combinations of clusters, e.g. 1_2 vs. 3_4_5.
#' Gene and cell filters can be applied to accelerate
#' the analysis, but this might lead to missing weak signals.
#'
#' @param object of \code{SingleCellExperiment} class
#' @param clusters.1 a character or numeric vector denoting which clusters
#' to use in the first group (named group.1 in the results)
#' @param clusters.2 a character or numeric vector denoting which clusters
#' to use in the second group (named group.2 in the results)
#' @param clustering.type "manual" or "optimal". "manual" refers to the
#' clustering formed using the "SelectKClusters" function and "optimal" to
#' the clustering formed using the "CalcSilhInfo" function.
#' Default is "manual".
#' @param test Which test to use. Only "wilcoxon" (the Wilcoxon rank-sum test,
#' AKA Mann-Whitney U test) is supported at the moment.
#' @param logfc.threshold Filters out genes that have log2 fold-change of the
#' averaged gene expression values below this threshold.
#' Default is \code{0.25}.
#' @param min.pct Filters out genes that have dropout rate (fraction of cells
#' expressing a gene) below this threshold in both comparison groups
#' Default is \code{0.1}.
#' @param min.diff.pct Filters out genes that do not have this minimum
#' difference in the dropout rates (fraction of cells expressing a gene)
#' between the two comparison groups. Default is \code{NULL}.
#' @param min.cells.group The minimum number of cells in the two comparison
#' groups to perform the DE analysis. If the number of cells is below the
#' threshold, then the DE analysis is not performed.
#' Default is \code{3}.
#' @param max.cells.per.cluster The maximun number of cells per cluster
#' if downsampling is performed to speed up the DE analysis.
#' Default is \code{NULL}, i.e. no downsampling.
#' @param return.thresh If only.pos=TRUE, then return only genes that
#' have the adjusted p-value (adjusted by the Bonferroni method) below or
#' equal to this threshold.  Default is \code{0.01}.
#' @param only.pos Whether to return only genes that have an adjusted
#' p-value (adjusted by the Bonferroni method) below or equal to the
#' threshold. Default is \code{FALSE}.
#'
#' @name FindGeneMarkers
#'
#' @return a data frame of the results if positive results were found, else NULL
#'
#' @keywords differential expression DE analysis gene markers
#'
#' @importFrom S4Vectors metadata
#' @importFrom stats wilcox.test p.adjust
#' @importFrom SingleCellExperiment logcounts
#'
#' @examples
#' library(SingleCellExperiment)
#' sce <- SingleCellExperiment(assays = list(logcounts = pbmc3k_500))
#' sce <- PrepareILoReg(sce)
#' ## These settings are just to accelerate the example, use the defaults.
#' sce <- RunParallelICP(sce,L=2,threads=1,C=0.1,k=5,r=1)
#' sce <- RunPCA(sce,p=5)
#' sce <- HierarchicalClustering(sce)
#' sce <- SelectKClusters(sce,K=5)
#' gene_markes_1 <- FindGeneMarkers(sce,clusters.1=1)
#' gene_markes_1_vs_2 <- FindGeneMarkers(sce,clusters.1=1,clusters.2=2)
#'
FindGeneMarkers.SingleCellExperiment <- function(object,
                                                 clusters.1,
                                                 clusters.2,
                                                 clustering.type,
                                                 test,
                                                 logfc.threshold,
                                                 min.pct,
                                                 min.diff.pct,
                                                 min.cells.group,
                                                 max.cells.per.cluster,
                                                 return.thresh,
                                                 only.pos) {

  if (clustering.type=="manual")
  {
    clustering <- metadata(object)$iloreg$clustering.manual
  } else if (clustering.type=="optimal")
  {
    clustering <- metadata(object)$iloreg$clustering.optimal
  } else {
    clustering <- metadata(object)$iloreg$clustering.manual
    cat("clustering.type='manual'")
  }

  data <- logcounts(object)

  cells_to_include_1 <- names(clustering)[clustering %in% clusters.1]
  clustering_1 <- factor(rep("group.1",length(cells_to_include_1)))
  names(clustering_1) <- cells_to_include_1

  if (is.null(clusters.2)) {
    clusters.2 <- setdiff(levels(clustering),clusters.1)
  }
  cells_to_include_2 <- names(clustering)[clustering %in% clusters.2]
  clustering_2 <- factor(rep("group.2",length(cells_to_include_2)))
  names(clustering_2) <- cells_to_include_2

  data <- data[,c(cells_to_include_1,cells_to_include_2)]

  clustering <- factor(c(as.character(clustering_1),as.character(clustering_2)))
  names(clustering) <- c(cells_to_include_1,cells_to_include_2)

  clusters <- levels(clustering)

  # Remove genes that are not expressed in any of the cells
  data <- data[Matrix::rowSums(data)!=0,]

  clusters <- levels(clustering)

  # Downsample each cluster
  if (!is.null(max.cells.per.cluster))
  {
    cells_downsampled <- c()
    for (cluster in clusters)
    {
      cells_in_cluster <- table(clustering)[cluster]
      if (max.cells.per.cluster < cells_in_cluster)
      {
        inds <- sample(seq_len(cells_in_cluster),
                       size = max.cells.per.cluster,
                       replace = FALSE)
        cells_downsampled <- c(cells_downsampled,
                               names(clustering[clustering==cluster])[inds])
      }
    }
    data <- data[,cells_downsampled]
    clustering <- clustering[cells_downsampled]
  }

  # Compare cells from each cluster against all other clusters
  results_list <- list()

  # for (cluster in clusters)
  # {

  cluster <- "group.1"

  cat(paste0("testing cluster ",cluster,"\n"))
  # Extract data

  data_cluster <- data[,clustering==cluster]
  data_other <- data[,clustering!=cluster]

  # Skip if the number of cells in the test or the reference set
  # is lower than min.cells.group
  if (ncol(data_cluster) < min.cells.group | ncol(data_other) < min.cells.group)
  {
    cat("-----------------------------------\n")
    return(NULL)
  }

  # min.pct filter
  genes.pct_cluster <-
    apply(data_cluster,1,function(x) sum(x!=0))/ncol(data_cluster)
  genes.pct_other <-
    apply(data_other,1,function(x) sum(x!=0))/ncol(data_other)

  genes_to_include <-
    rownames(data_cluster)[genes.pct_cluster>=min.pct |
                             genes.pct_other >= min.pct]


  data_cluster <- data_cluster[genes_to_include,,drop=FALSE]
  data_other <- data_other[genes_to_include,,drop=FALSE]

  cat(paste0(nrow(data_cluster)," genes left after min.pct filtering\n"))
  if (nrow(data_cluster)==0)
  {
    cat("-----------------------------------\n")
    return(NULL)
  }

  # min.diff.pct filter
  if (!is.null(min.diff.pct))
  {
    genes.pct_cluster <- genes.pct_cluster[genes_to_include]
    genes.pct_other <- genes.pct_other[genes_to_include]

    genes_to_include <- rownames(data_cluster)[abs(genes.pct_cluster-genes.pct_other) >= min.diff.pct]

    data_cluster <- data_cluster[genes_to_include,,drop=FALSE]
    data_other <- data_other[genes_to_include,,drop=FALSE]
  }

  cat(paste0(nrow(data_cluster)," genes left after min.diff.pct filtering\n"))
  if (nrow(data_cluster)==0)
  {
    cat("-----------------------------------\n")
    return(NULL)
  }

  # logfc.threshold filter
  # Calculate log2 fold changes
  cluster_aves <- apply(data_cluster,1,mean)
  other_aves <- apply(data_other,1,mean)

  log2FC <- cluster_aves - other_aves

  genes_to_include <- rownames(data_cluster)[log2FC >= logfc.threshold | log2FC <= -logfc.threshold]

  data_cluster <- data_cluster[genes_to_include,,drop=FALSE]
  data_other <- data_other[genes_to_include,,drop=FALSE]

  cat(paste0(nrow(data_cluster)," genes left after logfc.threshold filtering\n"))
  if (nrow(data_cluster)==0)
  {
    cat("-----------------------------------\n")
    return(NULL)
  }

  # Run DE test

  if (test=="wilcox")
  {
    wilcox.res <- lapply(rownames(data_cluster),function(x) wilcox.test(x=data_cluster[x,],y=data_other[x,]))
    p_values <- unlist(lapply(wilcox.res,function(x) x$p.value))
    names(p_values) <- rownames(data_cluster)

    # Adjust p-values
    adj_p_values <- p.adjust(p_values, method = "bonferroni", n = nrow(object))

    res <- cbind(p_values,
                 adj_p_values,
                 log2FC[names(p_values)],
                 genes.pct_cluster[names(p_values)],
                 genes.pct_other[names(p_values)],
                 abs(genes.pct_cluster-genes.pct_other)[names(p_values)])
    colnames(res) <- c("p.value","adj.p.value","log2FC","pct.1","pct.2","diff.pct")
    res <- as.data.frame(res)
    res$cluster <- cluster
    res$gene <- names(p_values)
  }

  results_list[[cluster]] <- res

  results_df <- do.call(rbind,results_list)
  rownames(results_df) <- make.unique(unlist(lapply(results_list,rownames)))

  results_df$cluster <- NULL

  if(only.pos) {
    results_df <- results_df[results_df$adj.p.value <= return.thresh,]
    return(results_df)
  }
  return(results_df)

}

#' @rdname FindGeneMarkers
#' @aliases FindGeneMarkers
setMethod("FindGeneMarkers", signature(object = "SingleCellExperiment"),
          FindGeneMarkers.SingleCellExperiment)

#' @title Gene expression visualization using violin plots
#'
#' @description
#' The VlnPlot function enables visualizing expression levels of a gene,
#' or multiple genes, across clusters using Violin plots.
#'
#' @param object of \code{SingleCellExperiment} class
#' @param clustering.type "manual" or "optimal". "manual"
#' refers to the clustering formed using the "SelectKClusters" function
#' and "optimal" to the clustering formed using the
#' "CalcSilhInfo" function. Default is "manual".
#' @param genes a character vector denoting the gene names that are visualized
#' @param return.plot return.plot whether to return the ggplot2 object
#' @param rotate.x.axis.labels a logical denoting whether the x-axis
#' labels should be rotated 90 degrees.
#' or just draw it. Default is \code{FALSE}.
#'
#' @name VlnPlot
#'
#' @return ggplot2 object if return.plot=TRUE
#'
#' @keywords violin plot
#'
#' @importFrom S4Vectors metadata
#' @import ggplot2
#' @importFrom cowplot plot_grid
#' @importFrom SingleCellExperiment logcounts
#'
#' @examples
#' library(SingleCellExperiment)
#' sce <- SingleCellExperiment(assays = list(logcounts = pbmc3k_500))
#' sce <- PrepareILoReg(sce)
#' ## These settings are just to accelerate the example, use the defaults.
#' sce <- RunParallelICP(sce,L=2,threads=1,C=0.1,k=5,r=1)
#' sce <- RunPCA(sce,p=5)
#' sce <- HierarchicalClustering(sce)
#' sce <- SelectKClusters(sce,K=5)
#' VlnPlot(sce,genes=c("CD3D","CD79A","CST3"))
#'
VlnPlot.SingleCellExperiment <- function(object,
                                         clustering.type,
                                         genes,
                                         return.plot,
                                         rotate.x.axis.labels) {


  if (clustering.type=="manual")
  {
    clustering <- metadata(object)$iloreg$clustering.manual
  } else if (clustering.type=="optimal")
  {
    clustering <- metadata(object)$iloreg$clustering.optimal
  } else {
    clustering <- metadata(object)$iloreg$clustering.manual
    message("clustering.type='manual'")
  }

  data <- logcounts(object)

  df <- as.numeric(t(data[genes,]))
  df <- data.frame(matrix(df,ncol = 1,dimnames = list(seq_len(length(df)),"Expression")))
  df$gene  <- unlist(lapply(genes,function(x) rep(x,ncol(data))))
  df$gene <- factor(df$gene)
  df$Cluster <- rep(as.character(clustering),length(genes))
  df$Cluster <- factor(df$Cluster)


  if (rotate.x.axis.labels)
  {
    plotlist <- lapply(genes,function(x) ggplot(df[df$gene==x,], aes_string(x='Cluster', y='Expression', fill='Cluster'))+geom_violin(trim=TRUE)+geom_jitter(height = 0, width = 0.1)+theme_classic()+ggtitle(x)+theme(plot.title = element_text(hjust = 0.5),legend.position = "none",axis.text.x = element_text(angle = 90, hjust = 1)))
  } else {
    plotlist <- lapply(genes,function(x) ggplot(df[df$gene==x,], aes_string(x='Cluster', y='Expression', fill='Cluster'))+geom_violin(trim=TRUE)+geom_jitter(height = 0, width = 0.1)+theme_classic()+ggtitle(x)+theme(plot.title = element_text(hjust = 0.5),legend.position = "none"))

  }


  p <- plot_grid(plotlist = plotlist)

  if (return.plot)
  {
    return(p)
  } else {
    print(p)
  }

}

#' @rdname VlnPlot
#' @aliases VlnPlot
setMethod("VlnPlot", signature(object = "SingleCellExperiment"),
          VlnPlot.SingleCellExperiment)

#' @title Heatmap visualization of the gene markers identified by FindAllGeneMarkers
#'
#' @description
#' The GeneHeatmap function enables drawing a heatmap of the gene markers
#' identified by FindAllGeneMarkers, where the cell are grouped
#' by the clustering.
#'
#' @param object of \code{SingleCellExperiment} class
#' @param clustering.type "manual" or "optimal". "manual" refers to the
#' clustering formed using the "SelectKClusters" function and "optimal"
#' to the clustering using the "CalcSilhInfo" function.
#' Default is "manual".
#' @param gene.markers a data frame of the gene markers generated
#' by FindAllGeneMarkers function. To accelerate the drawing, filtering
#' the dataframe by selecting e.g. top 10 genes is recommended.
#'
#' @name GeneHeatmap
#'
#' @return nothing
#'
#' @keywords gene heatmap grouped
#'
#' @importFrom S4Vectors metadata
#' @import pheatmap
#' @importFrom SingleCellExperiment logcounts
#' @examples
#' library(SingleCellExperiment)
#' sce <- SingleCellExperiment(assays = list(logcounts = pbmc3k_500))
#' sce <- PrepareILoReg(sce)
#' ## These settings are just to accelerate the example, use the defaults.
#' sce <- RunParallelICP(sce,L=2,threads=1,C=0.1,r=1,k=5) # Use L=200
#' sce <- RunPCA(sce,p=5)
#' sce <- HierarchicalClustering(sce)
#' sce <- SelectKClusters(sce,K=5)
#' gene_markers <- FindAllGeneMarkers(sce,log2fc.threshold = 0.5,min.pct = 0.5)
#' top10_log2FC <- SelectTopGenes(gene_markers,top.N=10,
#' criterion.type="log2FC",inverse=FALSE)
#' GeneHeatmap(sce,clustering.type = "manual",
#'  gene.markers = top10_log2FC)
#'
GeneHeatmap.SingleCellExperiment <- function(object,
                                             clustering.type,
                                             gene.markers) {


  if (clustering.type=="manual")
  {
    clustering <- metadata(object)$iloreg$clustering.manual
  } else if (clustering.type=="optimal")
  {
    clustering <- metadata(object)$iloreg$clustering.optimal
  } else {
    clustering <- metadata(object)$iloreg$clustering.manual
    cat("clustering.type='manual'")
  }

  data <- logcounts(object)
  data <- data[unique(gene.markers$gene),]
  # data <- scale(data,center = TRUE,scale = TRUE)
  data <- data[,order(clustering)]


  # Generate column annotations
  annotation = data.frame(cluster=sort(clustering))

  pheatmap(data,show_colnames = FALSE,
           gaps_col = cumsum(table(clustering[order(clustering)])),
           gaps_row = cumsum(table(gene.markers[!duplicated(gene.markers$gene),"cluster"])),
           cluster_rows = FALSE,
           cluster_cols = FALSE,
           annotation_col = annotation)

}

#' @rdname GeneHeatmap
#' @aliases GeneHeatmap
setMethod("GeneHeatmap", signature(object = "SingleCellExperiment"),
          GeneHeatmap.SingleCellExperiment)

#' @title Visualiation of a custom annotation over nonlinear
#' dimensionality reduction
#'
#' @description
#' The AnnotationScatterPlot enables visualizing arbitrary class labels
#' over the nonliner dimensionality reduction, e.g. t-SNE or UMAP.
#'
#' @param object of \code{SingleCellExperiment} class
#' @param annotation a character vector, factor or numeric for the class labels.
#' @param return.plot return.plot whether to return the ggplot2 object or
#' just draw it. Default is \code{FALSE}.
#' @param dim.reduction.type "tsne" or "umap". Default is \code{tsne}.
#' @param point.size point size. Default is \code{0.7}.
#' @param show.legend a logical denoting whether to show the legend on the right
#' side of the plot. Default is \code{TRUE}.
#'
#' @name AnnotationScatterPlot
#'
#' @return ggplot2 object if return.plot=TRUE
#'
#' @keywords annotation custom visualization t-sne umap nonlinear
#' dimensionality reduction
#'
#' @importFrom S4Vectors metadata
#' @import ggplot2
#' @importFrom SingleCellExperiment reducedDim
#' @importFrom stats median
#'
#' @examples
#' library(SingleCellExperiment)
#' sce <- SingleCellExperiment(assays = list(logcounts = pbmc3k_500))
#' sce <- PrepareILoReg(sce)
#' ## These settings are just to accelerate the example, use the defaults.
#' sce <- RunParallelICP(sce,L=2,threads=1,C=0.1,k=5,r=1)
#' sce <- RunPCA(sce,p=5)
#' sce <- RunTSNE(sce)
#' sce <- HierarchicalClustering(sce)
#' sce <- SelectKClusters(sce,K=5)
#' ## Change the names to the first five alphabets and Visualize the annotation.
#' custom_annotation <- plyr::mapvalues(metadata(sce)$iloreg$clustering.manual,
#'                                      c(1,2,3,4,5),
#'                                      LETTERS[1:5])
#' AnnotationScatterPlot(sce,
#'                       annotation = custom_annotation,
#'                       return.plot = FALSE,
#'                       dim.reduction.type = "tsne",
#'                       show.legend = FALSE)
#'
#'
AnnotationScatterPlot.SingleCellExperiment <- function(object,
                                                       annotation,
                                                       return.plot,
                                                       dim.reduction.type,
                                                       point.size,
                                                       show.legend) {


  if (dim.reduction.type == "umap")
  {
    two.dim.data <- reducedDim(object,"UMAP")
    xlab <- "UMAP_1"
    ylab <- "UMAP_2"
  } else if (dim.reduction.type == "tsne"){
    two.dim.data <- reducedDim(object,"TSNE")
    xlab <- "tSNE_1"
    ylab <- "tSNE_2"
  } else {
    stop("dim.reduction.type must be either 'tsne' or 'umap'")
  }

  annotation <- factor(as.character(annotation))
  names(annotation) <- colnames(object)

  df <- as.data.frame(two.dim.data)
  df$group <- annotation
  colnames(df) <- c("dim1","dim2","group")

  two.dim.data_ <- two.dim.data
  rownames(two.dim.data_) <- names(annotation)
  cluster_centers <- lapply(levels(annotation),function(x) apply(two.dim.data_[names(annotation)[annotation==x],,drop=FALSE],2, median))
  cluster_centers <- do.call(rbind,cluster_centers)


  p<-ggplot(df, aes_string(x='dim1', y='dim2')) +
    geom_point(size=point.size,aes_string(color='group')) +
    xlab(xlab) +
    ylab(ylab) +
    theme_classic() +
    annotate("text",
             x = cluster_centers[,1],
             y = cluster_centers[,2],
             label = levels(annotation)) +
    guides(colour = guide_legend(override.aes = list(size=2)))


  if (!show.legend)
  {
    p <- p + theme(legend.position = "none")
  }

  if (return.plot)
  {
    return(p)
  } else {
    print(p)
  }

}

#' @rdname AnnotationScatterPlot
#' @aliases AnnotationScatterPlot
setMethod("AnnotationScatterPlot", signature(object = "SingleCellExperiment"),
          AnnotationScatterPlot.SingleCellExperiment)
elolab/ILoReg documentation built on March 28, 2022, 1:17 a.m.