R/barcode_binary_heatmap.R

Defines functions barcode_binary_heatmap

Documented in barcode_binary_heatmap

#' Barcode Binary Heatmap
#'
#' Creates a binary heatmap showing the absence or presence of new clones in samples ordered from L to R in the SummarizedExperiment.
#'
#' @param your_SE A Summarized Experiment object.
#' @param plot_labels Vector of x axis labels. Defaults to colnames(your_SE).
#' @param threshold Clones with a proportion below this threshold will be set to 0.
#' @param your_title The title for the plot.
#' @param label_size The size of the column labels.
#' @param return_table  Logical. Whether or not to return table of barcode sequences with their presence or absence in each sample indicated as a 1 or 0 resepctively in the value column column.
#' @return Displays a binary heat map in the current plot window. Or if return_table is set to TRUE, returns a dataframe indicating the presence or absence of each barcode in each sample.
#'
#' @export
#'
#' @examples
#' data(wu_subset)
#' barcode_binary_heatmap(your_SE = wu_subset[, 1:4])
barcode_binary_heatmap <- function(your_SE, plot_labels = NULL, threshold = 0,
    your_title = NULL, label_size = 12, return_table = FALSE) {

    # get labels for heatmap
    plot_labels <- plot_labels %||% colnames(your_SE)
    if (length(plot_labels) != ncol(your_SE)) {
        stop("plot_labels must be same length as number of columns being plotted")
    }

    # changing plotting_data to binary
    plotting_data <- SummarizedExperiment::assays(your_SE)[["proportions"]]
    plotting_data[plotting_data < threshold] <- 0
    plotting_data[plotting_data > 0] <- 1
    plotting_data <- plotting_data[rowSums(plotting_data) > 0, ]
    barcode_order <- rownames(plotting_data)[do.call(order, plotting_data)]

    # organizing data for plotting
    plotting_data <- tibble::rownames_to_column(plotting_data, var = "sequence")
    plotting_data <- tidyr::pivot_longer(plotting_data, cols = -sequence, names_to = "sample_name", values_to = "value")
    plotting_data$sample_name <- factor(plotting_data$sample_name, levels = colnames(your_SE))
    plotting_data$value <- factor(plotting_data$value, levels = c(0, 1))
    plotting_data$sequence <- factor(plotting_data$sequence, levels = barcode_order)
    x_column <- plyr::mapvalues(plotting_data$sample_name, from = colnames(your_SE), to = plot_labels)

    if (return_table) {
        return(plotting_data)
    }

    plotting_data[["x_labels"]] <- factor(x_column, levels = plot_labels)

    ggplot2::ggplot(plotting_data, ggplot2::aes(x = .data$x_labels, y = .data$sequence)) +
        ggplot2::geom_tile(ggplot2::aes(fill = .data$value)) +
        ggplot2::scale_fill_manual(paste0("Detection"),
            values = c("0" = "white", "1" = "#4575B4"),
            expand = c(0, 0),
            labels = c("not detected", "detected")
        ) +
        ggplot2::scale_y_discrete(labels = NULL, breaks = NULL, expand = c(0, 0)) +
        ggplot2::scale_x_discrete(expand = c(0, 0), labels = plot_labels) +
        ggplot2::ylab(NULL) +
        ggplot2::xlab(NULL) +
        ggplot2::ggtitle(your_title) +
        ggplot2::theme(
            plot.title = ggplot2::element_text(size = label_size),
            axis.text.x = ggplot2::element_text(angle = 90, hjust = 1, vjust = 0.5, size = label_size),
            legend.title = ggplot2::element_text(size = label_size),
            legend.key.width = ggplot2::unit(0.2, "cm"),
            legend.text = ggplot2::element_text(size = label_size),
            axis.ticks = ggplot2::element_blank(),
            panel.border = ggplot2::element_rect(colour = "black", fill = NA, size = 1)
        )
}
dunbarlabNIH/barcodetrackR documentation built on April 26, 2021, 6:20 p.m.