# Tests for dittoDimPlot function
# library(dittoSeq); library(testthat); source("setup.R"); source("test-DimPlot.R")
sce$number <- as.numeric(seq_along(colnames(sce)))
gene <- "gene1"
cont <- "number"
disc <- "groups"
disc2 <- "age"
cells.names <- colnames(sce)[1:40]
cells.logical <- c(rep(TRUE, 40), rep(FALSE,ncells-40))
cols <- c("red", "blue", "yellow", "green", "black", "gray", "white")
test_that("dittoDimPlot can plot continuous or discrete data & raw or normalized expression", {
expect_s3_class(
dittoDimPlot(
disc, object=sce),
"ggplot")
expect_s3_class(
dittoDimPlot(
cont, object=sce),
"ggplot")
expect_s3_class(
dittoDimPlot(
gene, object=sce),
"ggplot")
expect_s3_class(
dittoDimPlot(
gene, object=sce,
assay = "counts"),
"ggplot")
})
test_that("dittoDimPlot basic tweaks work", {
# Manuel Check: big dots
expect_s3_class(
dittoDimPlot(
cont, object=sce,
size = 10),
"ggplot")
# Manuel Check: triangles
expect_s3_class(
dittoDimPlot(
cont, object=sce,
shape.panel = 17),
"ggplot")
# Manuel Check: see through large dots
expect_s3_class(
dittoDimPlot(
cont, object=sce,
size = 5,
opacity = 0.5),
"ggplot")
})
test_that("dittoDimPlot main legend can be removed or adjusted", {
### Manual Check: Legend removed
expect_s3_class(
dittoDimPlot(
disc, object=sce,
legend.show = FALSE),
"ggplot")
### Manual Check: Legend title = "WOW"
expect_s3_class(
dittoDimPlot(
disc, object=sce,
legend.title = "WOW"),
"ggplot")
### Manual Check: Legend symbols LARGE
expect_s3_class(
dittoDimPlot(
disc, object=sce,
legend.size = 15),
"ggplot")
})
test_that("dittoDimPlots can be subset to show only certain cells/samples with any cells.use method", {
expect_s3_class(
{c1 <- dittoDimPlot(
disc, object=sce, data.out = TRUE,
cells.use = cells.names)
c1$p},
"ggplot")
expect_s3_class(
{c2 <- dittoDimPlot(
disc, object=sce, data.out = TRUE,
cells.use = cells.logical)
c2$p},
"ggplot")
c3 <- dittoDimPlot(
disc, object=sce,
cells.use = 1:40,
data.out = TRUE)
expect_equal(c1$Target_data, c2$Target_data)
expect_equal(c1$Target_data, c3$Target_data)
expect_equal(nrow(c3$Target_data), 40)
# And if we remove an entire grouping...
expect_s3_class(
dittoDimPlot(
disc, object=sce,
cells.use = meta(disc,sce)!="A"),
"ggplot")
})
test_that("dittoDimPlot shapes can be a metadata and the same as or distinct from var", {
expect_s3_class(
dittoDimPlot(
cont, object=sce,
shape.by = disc),
"ggplot")
expect_s3_class(
dittoDimPlot(
disc, object=sce,
shape.by = disc),
"ggplot")
expect_s3_class(
dittoDimPlot(
disc, object=sce,
shape.by = disc2),
"ggplot")
})
test_that("dittoDimPlot shapes can be adjusted in many ways", {
### Manual check: Shapes should be triangle and diamond
expect_s3_class(
dittoDimPlot(
cont, object=sce,
shape.by = disc2, shape.panel= 17:19),
"ggplot")
### Manual check: Shapes should be enlarged even more in the legend
expect_s3_class(
dittoDimPlot(
cont, object=sce,
shape.by = disc2, shape.legend.size = 10),
"ggplot")
### Manual check: Shapes legend title should be removed
expect_s3_class(
dittoDimPlot(
cont, object=sce,
shape.by = disc2, shape.legend.title = NULL),
"ggplot")
})
test_that("dittoDimPlot reduction.use can be changed", {
### Manuel Check: these should all look obviously distinct
expect_s3_class(
dittoDimPlot(
cont, object=sce),
"ggplot")
expect_s3_class(
dittoDimPlot(
cont, object=sce, reduction.use = "PCA"),
"ggplot")
expect_s3_class(
dittoDimPlot(
cont, object=sce, reduction.use = "PCA",
dim.1 = 3, dim.2 = 5),
"ggplot")
})
test_that("dittoDimPlots colors can be adjusted for discrete data", {
expect_s3_class(
dittoDimPlot(
disc, object=sce,
color.panel = cols),
"ggplot")
### Manual check: These two should look the same.
expect_s3_class(
dittoDimPlot(
disc, object=sce,
color.panel = cols[6:1]),
"ggplot")
expect_s3_class(
dittoDimPlot(
disc, object=sce,
color.panel = cols,
colors = 6:1),
"ggplot")
})
test_that("dittoDimPlots color scales can be adjusted for continuous data", {
expect_s3_class(
dittoDimPlot(
cont, object=sce,
min = -5, max = 100),
"ggplot")
expect_s3_class(
dittoDimPlot(
cont, object=sce,
legend.breaks = seq(10,60,10)),
"ggplot")
expect_s3_class(
dittoDimPlot(
cont, object=sce,
legend.breaks = seq(10,60,10),
legend.breaks.labels = c("WOW",2:5,"HEY!")),
"ggplot")
})
test_that("dittoDimPlots titles and theme can be adjusted", {
### Manual check: All titles should be adjusted.
expect_s3_class(
dittoDimPlot(
cont, object=sce,
main = "Gotta catch", sub = "em all",
xlab = "Pokemon", ylab = "Pokedex #s",
legend.title = "groups"),
"ggplot")
### Manual check: top and right plot outline removed
expect_s3_class(
dittoDimPlot(
cont, object=sce,
theme = theme_classic()),
"ggplot")
})
test_that("dittoDimPlots discrete labels can be adjusted", {
# Manual Check: 5:9
expect_s3_class(
dittoDimPlot(
disc, object=sce,
rename.var.groups = 5:9),
"ggplot")
# Manual Check: 3:6
expect_s3_class(
dittoDimPlot(
disc, object=sce,
shape.by = disc2, rename.shape.groups = 3:6),
"ggplot")
})
test_that("dittoDimPlot can be labeled or circled", {
### Manual Check: Labels should repel in the first two (and move between
# plots), and 1&3 with background, 2&4 without, 5: smaller labels
expect_s3_class(
dittoDimPlot(
disc, object=sce,
do.label = TRUE),
"ggplot")
expect_s3_class(
dittoDimPlot(
disc, object=sce,
do.label = TRUE,
labels.highlight = FALSE),
"ggplot")
expect_s3_class(
dittoDimPlot(
disc, object=sce,
do.label = TRUE,
labels.repel = FALSE),
"ggplot")
expect_s3_class(
dittoDimPlot(
disc, object=sce,
do.label = TRUE,
labels.highlight = FALSE,
labels.repel = FALSE),
"ggplot")
expect_s3_class(
dittoDimPlot(
disc, object=sce,
do.label = TRUE,
labels.size = 3),
"ggplot")
### Manual Check: all labels to right side
expect_s3_class(
dittoDimPlot(
disc, object=sce,
do.label = TRUE,
labels.repel.adjust = list(xlim=c(5,NA))),
"ggplot")
expect_s3_class(
dittoDimPlot(
disc, object=sce,
do.label = TRUE,
labels.repel.adjust = list(xlim=c(5,NA)),
labels.highlight = FALSE),
"ggplot")
})
test_that("dittoDimPlot labeling is robust to NAs", {
### Manual Check: Labels should repel in the first two (and move between
# plots), and 1&3 with background, 2&4 without, 5: smaller labels
na_in_clust <- sce
na_in_clust$clusters[1:5] <- NA
# Manual Check: Should be all four labels!
# No warning
expect_warning(
dittoDimPlot(
"clusters", object=na_in_clust,
do.label = TRUE),
NA)
na_in_tsne <- sce
tsne_na <- reducedDim(sce, "TSNE")
tsne_na[1,] <- NA
reducedDim(na_in_tsne, "TSNE") <- tsne_na
# Manual Check: Should be all four labels!
# There should be a warning here form the x/y coords, but not the labeling
expect_true(
all(!grepl(
"label",
names(warnings(
dittoDimPlot("clusters", object=na_in_tsne, do.label = TRUE)
))
))
)
})
test_that("dittoDimPlot trajectory adding works", {
expect_s3_class(
dittoDimPlot(
disc, object=sce,
add.trajectory.lineages = list(
c("B","A","C"),
c("C","A")),
trajectory.cluster.meta = disc,
do.label = TRUE),
"ggplot")
# Manual Check: Arrows should move & GROW.
expect_s3_class(
dittoDimPlot(
cont, object=sce,
add.trajectory.lineages = list(
c("C","A")),
trajectory.cluster.meta = disc,
trajectory.arrow.size = 1),
"ggplot")
# Manual Check: Arrows should be detached from points
expect_s3_class(
dittoDimPlot(
disc, object=sce,
add.trajectory.curves = list(
data.frame(
c(-10,0,-20),
c(-20,-10,0)),
data.frame(
c(5:20),
c(5:10,9:5,6:10)
)),
trajectory.cluster.meta = disc),
"ggplot")
})
test_that("dittoDimPlot lettering works", {
### Manual Check: Letters should be added
expect_s3_class(
dittoDimPlot(
disc, object=sce,
do.letter = TRUE, size = 3),
"ggplot")
### Manual Check: see through dots and letters
expect_s3_class(
dittoDimPlot(
disc, object=sce,
do.letter = TRUE, size = 3,
opacity = 0.5),
"ggplot")
})
test_that("dittoDimPlot can remove axes numbers", {
### Manual Check: Numbers should be removed from the axes
expect_s3_class(
dittoDimPlot(
disc, object=sce, show.axes.numbers = FALSE),
"ggplot")
})
test_that("dittoDimPlot plotting order can be ordered by the data, or have order randomized", {
un <- dittoDimPlot(object=sce, var=disc, data.out = TRUE, size = 10, order = "unordered")
dec <- dittoDimPlot(object=sce, var=disc, data.out = TRUE, size = 10, order = "decreasing")
inc <- dittoDimPlot(object=sce, var=disc, data.out = TRUE, size = 10, order = "increasing")
set.seed(42) # Hopefully with 2 different seeds, we can ensure that 1 will diverge from the original
ran <- dittoDimPlot(object=sce, var=disc, data.out = TRUE, size = 10, order = "randomize")
set.seed(12345)
ran2 <- dittoDimPlot(object=sce, var=disc, data.out = TRUE, size = 10, order = "randomize")
### Manual Check: Orange always in front
expect_s3_class(
dec$p,
"ggplot")
### Manual Check: Plots different, with no color clearly in front
expect_s3_class(
un$p,
"ggplot")
expect_s3_class(
ran$p,
"ggplot")
expect_s3_class(
ran2$p,
"ggplot")
expect_false(
all(c(
identical(
rownames(un$Target_data),
rownames(ran$Target_data)),
identical(
rownames(un$Target_data),
rownames(ran2$Target_data))
))
)
### Manual Check: Dark blue always in front
expect_equal(
dec$Target_data$color,
rev(inc$Target_data$color)
)
})
test_that("dittoDimPlot can add extra vars to dataframe", {
df1 <- dittoDimPlot(
disc, object=sce,
data.out = TRUE)[[2]]
expect_s3_class(
df2 <- dittoDimPlot(
disc, object=sce,
extra.vars = c(gene, disc2), data.out = TRUE)[[2]],
"data.frame")
expect_equal(ncol(df1), 3)
expect_equal(ncol(df2), 5)
})
test_that("dittoDimPlot genes can be different data types", {
df <- dittoDimPlot(gene, object = sce, data.out = TRUE,
assay = "counts")
expect_equal(
df$Target_data$color,
round(df$Target_data$color,0))
df <- dittoDimPlot(gene, object = sce, data.out = TRUE,
adjustment = "relative.to.max")
expect_equal(
0:1,
range(df$Target_data$color))
})
test_that("dittoDimPlot adding contours", {
expect_s3_class(dittoDimPlot(object=sce, disc,
do.contour = TRUE),
"ggplot")
### Manual Check: Contour lines light blue and dashed
expect_s3_class(dittoDimPlot(object=sce, disc,
do.contour = TRUE,
contour.color = "lightblue", contour.linetype = "dashed"),
"ggplot")
})
test_that("dittoDimPlot with and without rasterization produces identical plots", {
### Manual Check: Plots should appear identical
expect_s3_class(dittoDimPlot(object=sce, disc,
do.raster = TRUE),
"ggplot")
expect_s3_class(dittoDimPlot(object=sce, disc),
"ggplot")
})
test_that("dittoDimPlot ignores do.letter/do.label/do.ellipse for continuous data", {
expect_message(dittoDimPlot(object=sce, cont,
do.label = TRUE),
"do.label was/were ignored for non-discrete data", fixed = TRUE)
expect_message(dittoDimPlot(object=sce, cont,
do.letter = TRUE),
"do.letter was/were ignored for non-discrete data", fixed = TRUE)
expect_message(dittoDimPlot(object=sce, cont,
do.ellipse = TRUE),
"do.ellipse was/were ignored for non-discrete data", fixed = TRUE)
# No message for discrete data && MANUAL CHECK: ellipse is drawn
expect_message(dittoDimPlot(object=sce, disc,
do.ellipse = TRUE),
NA)
})
test_that("dittoDimPlot can be faceted with split.by (1 or 2 vars)", {
# MANUAL CHECK: FACETING
expect_s3_class(
dittoDimPlot(
disc, object=sce,
split.by = disc2),
"ggplot")
# horizontal
expect_s3_class(
dittoDimPlot(
disc, object=sce,
split.by = disc2,
split.nrow = 1),
"ggplot")
# vertical
expect_s3_class(
dittoDimPlot(
disc, object=sce,
split.by = disc2,
split.ncol = 1),
"ggplot")
# Grid with rows=age, cols=groups
expect_s3_class(
dittoDimPlot(
disc, object=sce,
split.by = c(disc2,disc)),
"ggplot")
})
test_that("dittoDimPlot faceting and cell.use and split.show.all.others work together", {
# MANUAL: Works with cells.use (should have grey cells)
expect_s3_class(
dittoDimPlot(
disc, object=sce,
split.by = c(disc2),
cells.use = cells.logical,
split.show.all.others = FALSE),
"ggplot")
expect_s3_class(
dittoDimPlot(
disc, object=sce,
split.by = c(disc2,disc),
cells.use = cells.logical,
split.show.all.others = FALSE),
"ggplot")
# MANUAL: Works with split.show.all.others on (should even more grey cells)
expect_s3_class(
dittoDimPlot(
disc, object=sce,
split.by = c(disc2,disc),
cells.use = cells.logical,
split.show.all.others = TRUE),
"ggplot")
# MANUAL: Works with split.show.all.others on (should even more grey cells)
expect_s3_class(
dittoDimPlot(
disc, object=sce,
split.by = c(disc2,disc),
cells.use = cells.logical,
split.show.all.others = TRUE),
"ggplot")
})
test_that("dittoDimPlot added features work with single-metadata faceting", {
expect_error(
print(dittoDimPlot(
disc, object=sce,
split.by = disc2,
do.label = TRUE,
split.show.all.others = FALSE)),
NA)
expect_error(
print(dittoDimPlot(
disc, object=sce,
split.by = disc2,
do.ellipse = TRUE,
split.show.all.others = FALSE)),
NA)
expect_error(
print(dittoDimPlot(
disc, object=sce,
split.by = disc2,
do.letter = TRUE,
split.show.all.others = FALSE)),
NA)
expect_error(
print(dittoDimPlot(
disc, object=sce,
split.by = disc2,
do.contour = TRUE,
split.show.all.others = FALSE)),
NA)
expect_error(
print(dittoDimPlot(
disc, object=sce,
split.by = disc2,
add.trajectory.lineages = list(
c("C","A")),
trajectory.cluster.meta = disc,
split.show.all.others = FALSE)),
NA)
expect_error(
print(dittoDimPlot(
disc, object=sce,
split.by = disc2,
add.trajectory.curves = list(
data.frame(
c(-10,0,-20),
c(-20,-10,0)),
data.frame(
c(5:20),
c(5:10,9:5,6:10))),
split.show.all.others = FALSE)),
NA)
})
test_that("dittoDimPlot added features work with double-metadata faceting", {
expect_error(
print(dittoDimPlot(
disc, object=sce,
split.by = c(disc2,disc),
do.label = TRUE,
split.show.all.others = FALSE)),
NA)
expect_error(
print(dittoDimPlot(
disc, object=sce,
split.by = c(disc2,disc),
do.ellipse = TRUE,
split.show.all.others = FALSE)),
NA)
expect_error(
print(dittoDimPlot(
disc, object=sce,
split.by = c(disc2,disc),
do.letter = TRUE,
split.show.all.others = FALSE)),
NA)
expect_error(
print(dittoDimPlot(
disc, object=sce,
split.by = c(disc2,disc),
add.trajectory.lineages = list(
c("C","A")),
trajectory.cluster.meta = disc,
split.show.all.others = FALSE)),
NA)
expect_error(
print(dittoDimPlot(
disc, object=sce,
split.by = c(disc2,disc),
add.trajectory.curves = list(
data.frame(
c(-10,0,-20),
c(-20,-10,0)),
data.frame(
c(5:20),
c(5:10,9:5,6:10))),
split.show.all.others = FALSE)),
NA)
})
test_that("dittoDimPlot swap.rownames works", {
expect_s3_class(
dittoDimPlot(sce, "gene1_symb", swap.rownames = "symbol"),
"ggplot")
})
test_that("dittoDimPlot allows plotting of multiple vars, via faceting", {
expect_s3_class(
dittoDimPlot(
sce, c("gene1","gene2","number")),
"ggplot")
# These should have transposed facet grids
expect_s3_class(
print(dittoDimPlot(
sce, c("gene1","gene2","number"),
split.by = disc2)),
"ggplot")
expect_s3_class(
print(dittoDimPlot(
sce, c("gene1","gene2","number"),
split.by = disc2, multivar.split.dir = "row")),
"ggplot")
expect_error(
dittoDimPlot(
sce, c(disc,"gene2","number")),
"Only numeric data")
expect_warning(
dittoDimPlot(
sce, c("gene1","gene2","number"),
split.by = c(disc2,disc)),
"second 'split.by' element will be ignored")
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.