tests/testthat/test-DimPlot.R

# Tests for dittoDimPlot function
# library(dittoSeq); library(testthat); source("setup.R"); source("test-DimPlot.R")

sce$number <- as.numeric(seq_along(colnames(sce)))
gene <- "gene1"
cont <- "number"
disc <- "groups"
disc2 <- "age"
cells.names <- colnames(sce)[1:40]
cells.logical <- c(rep(TRUE, 40), rep(FALSE,ncells-40))
cols <- c("red", "blue", "yellow", "green", "black", "gray", "white")

test_that("dittoDimPlot can plot continuous or discrete data & raw or normalized expression", {
    expect_s3_class(
        dittoDimPlot(
            disc, object=sce),
        "ggplot")
    expect_s3_class(
        dittoDimPlot(
            cont, object=sce),
        "ggplot")
    expect_s3_class(
        dittoDimPlot(
            gene, object=sce),
        "ggplot")
    expect_s3_class(
        dittoDimPlot(
            gene, object=sce,
            assay = "counts"),
        "ggplot")
})

test_that("dittoDimPlot basic tweaks work", {
    # Manuel Check: big dots
    expect_s3_class(
        dittoDimPlot(
            cont, object=sce,
            size = 10),
        "ggplot")
    # Manuel Check: triangles
    expect_s3_class(
        dittoDimPlot(
            cont, object=sce,
            shape.panel = 17),
        "ggplot")
    # Manuel Check: see through large dots
    expect_s3_class(
        dittoDimPlot(
            cont, object=sce,
            size = 5,
            opacity = 0.5),
        "ggplot")
})

test_that("dittoDimPlot main legend can be removed or adjusted", {
    ### Manual Check: Legend removed
    expect_s3_class(
        dittoDimPlot(
            disc, object=sce,
            legend.show = FALSE),
        "ggplot")
    ### Manual Check: Legend title = "WOW"
    expect_s3_class(
        dittoDimPlot(
            disc, object=sce,
            legend.title = "WOW"),
        "ggplot")
    ### Manual Check: Legend symbols LARGE
    expect_s3_class(
        dittoDimPlot(
            disc, object=sce,
            legend.size = 15),
        "ggplot")
})

test_that("dittoDimPlots can be subset to show only certain cells/samples with any cells.use method", {
    expect_s3_class(
        {c1 <- dittoDimPlot(
            disc, object=sce, data.out = TRUE,
            cells.use = cells.names)
        c1$p},
        "ggplot")
    expect_s3_class(
        {c2 <- dittoDimPlot(
            disc, object=sce, data.out = TRUE,
            cells.use = cells.logical)
        c2$p},
        "ggplot")
    c3 <- dittoDimPlot(
        disc, object=sce,
        cells.use = 1:40,
        data.out = TRUE)
    expect_equal(c1$Target_data, c2$Target_data)
    expect_equal(c1$Target_data, c3$Target_data)
    expect_equal(nrow(c3$Target_data), 40)
    # And if we remove an entire grouping...
    expect_s3_class(
        dittoDimPlot(
            disc, object=sce,
            cells.use = meta(disc,sce)!="A"),
        "ggplot")
})

test_that("dittoDimPlot shapes can be a metadata and the same as or distinct from var", {
    expect_s3_class(
        dittoDimPlot(
            cont, object=sce,
            shape.by = disc),
        "ggplot")
    expect_s3_class(
        dittoDimPlot(
            disc, object=sce,
            shape.by = disc),
        "ggplot")
    expect_s3_class(
        dittoDimPlot(
            disc, object=sce,
            shape.by = disc2),
        "ggplot")
})

test_that("dittoDimPlot shapes can be adjusted in many ways", {
    ### Manual check: Shapes should be triangle and diamond
    expect_s3_class(
        dittoDimPlot(
            cont, object=sce,
            shape.by = disc2, shape.panel= 17:19),
        "ggplot")
    ### Manual check: Shapes should be enlarged even more in the legend
    expect_s3_class(
        dittoDimPlot(
            cont, object=sce,
            shape.by = disc2, shape.legend.size = 10),
        "ggplot")
    ### Manual check: Shapes legend title should be removed
    expect_s3_class(
        dittoDimPlot(
            cont, object=sce,
            shape.by = disc2, shape.legend.title = NULL),
        "ggplot")
})

test_that("dittoDimPlot reduction.use can be changed", {
    ### Manuel Check: these should all look obviously distinct
    expect_s3_class(
        dittoDimPlot(
            cont, object=sce),
        "ggplot")
    expect_s3_class(
        dittoDimPlot(
            cont, object=sce, reduction.use = "PCA"),
        "ggplot")
    expect_s3_class(
        dittoDimPlot(
            cont, object=sce, reduction.use = "PCA",
            dim.1 = 3, dim.2 = 5),
        "ggplot")
})

test_that("dittoDimPlots colors can be adjusted for discrete data", {
    expect_s3_class(
        dittoDimPlot(
            disc, object=sce,
            color.panel = cols),
        "ggplot")
    ### Manual check: These two should look the same.
    expect_s3_class(
        dittoDimPlot(
            disc, object=sce,
            color.panel = cols[6:1]),
        "ggplot")
    expect_s3_class(
        dittoDimPlot(
            disc, object=sce,
            color.panel = cols,
            colors = 6:1),
        "ggplot")
})

test_that("dittoDimPlots color scales can be adjusted for continuous data", {
    expect_s3_class(
        dittoDimPlot(
            cont, object=sce,
            min = -5, max = 100),
        "ggplot")
    expect_s3_class(
        dittoDimPlot(
            cont, object=sce,
            legend.breaks = seq(10,60,10)),
        "ggplot")
    expect_s3_class(
        dittoDimPlot(
            cont, object=sce,
            legend.breaks = seq(10,60,10),
            legend.breaks.labels = c("WOW",2:5,"HEY!")),
        "ggplot")
})

test_that("dittoDimPlots titles and theme can be adjusted", {
    ### Manual check: All titles should be adjusted.
    expect_s3_class(
        dittoDimPlot(
            cont, object=sce,
            main = "Gotta catch", sub = "em all",
            xlab = "Pokemon", ylab = "Pokedex #s",
            legend.title = "groups"),
        "ggplot")
    ### Manual check: top and right plot outline removed
    expect_s3_class(
        dittoDimPlot(
            cont, object=sce,
            theme = theme_classic()),
        "ggplot")
})

test_that("dittoDimPlots discrete labels can be adjusted", {
    # Manual Check: 5:9
    expect_s3_class(
        dittoDimPlot(
            disc, object=sce,
            rename.var.groups = 5:9),
        "ggplot")
    # Manual Check: 3:6
    expect_s3_class(
        dittoDimPlot(
            disc, object=sce,
            shape.by = disc2, rename.shape.groups = 3:6),
        "ggplot")
})

test_that("dittoDimPlot can be labeled or circled", {
    ### Manual Check: Labels should repel in the first two (and move between
    # plots), and 1&3 with background, 2&4 without, 5: smaller labels
    expect_s3_class(
        dittoDimPlot(
            disc, object=sce,
            do.label = TRUE),
        "ggplot")
    expect_s3_class(
        dittoDimPlot(
            disc, object=sce,
            do.label = TRUE,
            labels.highlight = FALSE),
        "ggplot")
    expect_s3_class(
        dittoDimPlot(
            disc, object=sce,
            do.label = TRUE,
            labels.repel = FALSE),
        "ggplot")
    expect_s3_class(
        dittoDimPlot(
            disc, object=sce,
            do.label = TRUE,
            labels.highlight = FALSE,
            labels.repel = FALSE),
        "ggplot")
    expect_s3_class(
        dittoDimPlot(
            disc, object=sce,
            do.label = TRUE,
            labels.size = 3),
        "ggplot")

    ### Manual Check: all labels to right side
    expect_s3_class(
        dittoDimPlot(
            disc, object=sce,
            do.label = TRUE,
            labels.repel.adjust = list(xlim=c(5,NA))),
        "ggplot")
    expect_s3_class(
        dittoDimPlot(
            disc, object=sce,
            do.label = TRUE,
            labels.repel.adjust = list(xlim=c(5,NA)),
            labels.highlight = FALSE),
        "ggplot")
})

test_that("dittoDimPlot labeling is robust to NAs", {
    ### Manual Check: Labels should repel in the first two (and move between
    # plots), and 1&3 with background, 2&4 without, 5: smaller labels
    na_in_clust <- sce
    na_in_clust$clusters[1:5] <- NA
    
    # Manual Check: Should be all four labels!
    # No warning
    expect_warning(
        dittoDimPlot(
            "clusters", object=na_in_clust,
            do.label = TRUE),
        NA)
    
    na_in_tsne <- sce
    tsne_na <- reducedDim(sce, "TSNE")
    tsne_na[1,] <- NA
    reducedDim(na_in_tsne, "TSNE") <- tsne_na
    
    # Manual Check: Should be all four labels!
    # There should be a warning here form the x/y coords, but not the labeling
    expect_true(
        all(!grepl(
            "label",
            names(warnings(
                dittoDimPlot("clusters", object=na_in_tsne, do.label = TRUE)
            ))
        ))
    )
    
})

test_that("dittoDimPlot trajectory adding works", {
    expect_s3_class(
        dittoDimPlot(
            disc, object=sce,
            add.trajectory.lineages = list(
                c("B","A","C"),
                c("C","A")),
            trajectory.cluster.meta = disc,
            do.label = TRUE),
        "ggplot")
    # Manual Check: Arrows should move & GROW.
    expect_s3_class(
        dittoDimPlot(
            cont, object=sce,
            add.trajectory.lineages = list(
                c("C","A")),
            trajectory.cluster.meta = disc,
            trajectory.arrow.size = 1),
        "ggplot")
    # Manual Check: Arrows should be detached from points
    expect_s3_class(
        dittoDimPlot(
            disc, object=sce,
            add.trajectory.curves = list(
                data.frame(
                    c(-10,0,-20),
                    c(-20,-10,0)),
                data.frame(
                    c(5:20),
                    c(5:10,9:5,6:10)
                )),
            trajectory.cluster.meta = disc),
        "ggplot")
})

test_that("dittoDimPlot lettering works", {
    ### Manual Check: Letters should be added
    expect_s3_class(
        dittoDimPlot(
            disc, object=sce,
            do.letter = TRUE, size = 3),
        "ggplot")
    ### Manual Check: see through dots and letters
    expect_s3_class(
        dittoDimPlot(
            disc, object=sce,
            do.letter = TRUE, size = 3,
            opacity = 0.5),
        "ggplot")
})

test_that("dittoDimPlot can remove axes numbers", {
    ### Manual Check: Numbers should be removed from the axes
    expect_s3_class(
        dittoDimPlot(
            disc, object=sce, show.axes.numbers = FALSE),
        "ggplot")
})

test_that("dittoDimPlot plotting order can be ordered by the data, or have order randomized", {
    un <- dittoDimPlot(object=sce, var=disc, data.out = TRUE, size = 10, order = "unordered")
    dec <- dittoDimPlot(object=sce, var=disc, data.out = TRUE, size = 10, order = "decreasing")
    inc <- dittoDimPlot(object=sce, var=disc, data.out = TRUE, size = 10, order = "increasing")
    set.seed(42) # Hopefully with 2 different seeds, we can ensure that 1 will diverge from the original
    ran <- dittoDimPlot(object=sce, var=disc, data.out = TRUE, size = 10, order = "randomize")
    set.seed(12345)
    ran2 <- dittoDimPlot(object=sce, var=disc, data.out = TRUE, size = 10, order = "randomize")
    ### Manual Check: Orange always in front
    expect_s3_class(
        dec$p,
        "ggplot")
    ### Manual Check: Plots different, with no color clearly in front
    expect_s3_class(
        un$p,
        "ggplot")
    expect_s3_class(
        ran$p,
        "ggplot")
    expect_s3_class(
        ran2$p,
        "ggplot")
    expect_false(
        all(c(
            identical(
                rownames(un$Target_data),
                rownames(ran$Target_data)),
            identical(
                rownames(un$Target_data),
                rownames(ran2$Target_data))
            ))
    )
    ### Manual Check: Dark blue always in front
    expect_equal(
        dec$Target_data$color,
        rev(inc$Target_data$color)
    )
})

test_that("dittoDimPlot can add extra vars to dataframe", {
    df1 <- dittoDimPlot(
            disc, object=sce,
            data.out = TRUE)[[2]]
    expect_s3_class(
        df2 <- dittoDimPlot(
            disc, object=sce,
            extra.vars = c(gene, disc2), data.out = TRUE)[[2]],
        "data.frame")
    expect_equal(ncol(df1), 3)
    expect_equal(ncol(df2), 5)
})

test_that("dittoDimPlot genes can be different data types", {
    df <- dittoDimPlot(gene, object = sce, data.out = TRUE,
        assay = "counts")
    expect_equal(
        df$Target_data$color,
        round(df$Target_data$color,0))
    df <- dittoDimPlot(gene, object = sce, data.out = TRUE,
        adjustment = "relative.to.max")
    expect_equal(
        0:1,
        range(df$Target_data$color))
})

test_that("dittoDimPlot adding contours", {
    expect_s3_class(dittoDimPlot(object=sce, disc,
        do.contour = TRUE),
        "ggplot")
    
    ### Manual Check: Contour lines light blue and dashed
    expect_s3_class(dittoDimPlot(object=sce, disc,
        do.contour = TRUE,
        contour.color = "lightblue", contour.linetype = "dashed"),
        "ggplot")
})

test_that("dittoDimPlot with and without rasterization produces identical plots", {
    ### Manual Check: Plots should appear identical
    expect_s3_class(dittoDimPlot(object=sce, disc,
        do.raster = TRUE),
        "ggplot")

    expect_s3_class(dittoDimPlot(object=sce, disc),
        "ggplot")
})

test_that("dittoDimPlot ignores do.letter/do.label/do.ellipse for continuous data", {
    expect_message(dittoDimPlot(object=sce, cont,
        do.label = TRUE),
        "do.label was/were ignored for non-discrete data", fixed = TRUE)
    expect_message(dittoDimPlot(object=sce, cont,
        do.letter = TRUE),
        "do.letter was/were ignored for non-discrete data", fixed = TRUE)
    expect_message(dittoDimPlot(object=sce, cont,
        do.ellipse = TRUE),
        "do.ellipse was/were ignored for non-discrete data", fixed = TRUE)
    
    # No message for discrete data && MANUAL CHECK: ellipse is drawn 
    expect_message(dittoDimPlot(object=sce, disc,
        do.ellipse = TRUE),
        NA)
})

test_that("dittoDimPlot can be faceted with split.by (1 or 2 vars)", {
    # MANUAL CHECK: FACETING
    expect_s3_class(
        dittoDimPlot(
            disc, object=sce,
            split.by = disc2),
        "ggplot")
    # horizontal
    expect_s3_class(
        dittoDimPlot(
            disc, object=sce,
            split.by = disc2,
            split.nrow = 1),
        "ggplot")
    # vertical
    expect_s3_class(
        dittoDimPlot(
            disc, object=sce,
            split.by = disc2,
            split.ncol = 1),
        "ggplot")
    # Grid with rows=age, cols=groups
    expect_s3_class(
        dittoDimPlot(
            disc, object=sce,
            split.by = c(disc2,disc)),
        "ggplot")
})

test_that("dittoDimPlot faceting and cell.use and split.show.all.others work together", {
    # MANUAL: Works with cells.use (should have grey cells)
    expect_s3_class(
        dittoDimPlot(
            disc, object=sce,
            split.by = c(disc2),
            cells.use = cells.logical,
            split.show.all.others = FALSE),
        "ggplot")
    expect_s3_class(
        dittoDimPlot(
            disc, object=sce,
            split.by = c(disc2,disc),
            cells.use = cells.logical,
            split.show.all.others = FALSE),
        "ggplot")
    
    # MANUAL: Works with split.show.all.others on (should even more grey cells)
    expect_s3_class(
        dittoDimPlot(
            disc, object=sce,
            split.by = c(disc2,disc),
            cells.use = cells.logical,
            split.show.all.others = TRUE),
        "ggplot")
    # MANUAL: Works with split.show.all.others on (should even more grey cells)
    expect_s3_class(
        dittoDimPlot(
            disc, object=sce,
            split.by = c(disc2,disc),
            cells.use = cells.logical,
            split.show.all.others = TRUE),
        "ggplot")
})

test_that("dittoDimPlot added features work with single-metadata faceting", {
    expect_error(
        print(dittoDimPlot(
            disc, object=sce,
            split.by = disc2,
            do.label = TRUE,
            split.show.all.others = FALSE)),
        NA)
    expect_error(
        print(dittoDimPlot(
            disc, object=sce,
            split.by = disc2,
            do.ellipse = TRUE,
            split.show.all.others = FALSE)),
        NA)
    expect_error(
        print(dittoDimPlot(
            disc, object=sce,
            split.by = disc2,
            do.letter = TRUE,
            split.show.all.others = FALSE)),
        NA)
    expect_error(
        print(dittoDimPlot(
            disc, object=sce,
            split.by = disc2,
            do.contour = TRUE,
            split.show.all.others = FALSE)),
        NA)
    expect_error(
        print(dittoDimPlot(
            disc, object=sce,
            split.by = disc2,
            add.trajectory.lineages = list(
                    c("C","A")),
            trajectory.cluster.meta = disc,
            split.show.all.others = FALSE)),
        NA)
    expect_error(
        print(dittoDimPlot(
            disc, object=sce,
            split.by = disc2,
            add.trajectory.curves = list(
                data.frame(
                    c(-10,0,-20),
                    c(-20,-10,0)),
                data.frame(
                    c(5:20),
                    c(5:10,9:5,6:10))),
            split.show.all.others = FALSE)),
        NA)
})

test_that("dittoDimPlot added features work with double-metadata faceting", {
    expect_error(
        print(dittoDimPlot(
            disc, object=sce,
            split.by = c(disc2,disc),
            do.label = TRUE,
            split.show.all.others = FALSE)),
        NA)
    expect_error(
        print(dittoDimPlot(
            disc, object=sce,
            split.by = c(disc2,disc),
            do.ellipse = TRUE,
            split.show.all.others = FALSE)),
        NA)
    expect_error(
        print(dittoDimPlot(
            disc, object=sce,
            split.by = c(disc2,disc),
            do.letter = TRUE,
            split.show.all.others = FALSE)),
        NA)
    expect_error(
        print(dittoDimPlot(
            disc, object=sce,
            split.by = c(disc2,disc),
            add.trajectory.lineages = list(
                    c("C","A")),
            trajectory.cluster.meta = disc,
            split.show.all.others = FALSE)),
        NA)
    expect_error(
        print(dittoDimPlot(
            disc, object=sce,
            split.by = c(disc2,disc),
            add.trajectory.curves = list(
                data.frame(
                    c(-10,0,-20),
                    c(-20,-10,0)),
                data.frame(
                    c(5:20),
                    c(5:10,9:5,6:10))),
            split.show.all.others = FALSE)),
        NA)
})

test_that("dittoDimPlot swap.rownames works", {
    expect_s3_class(
        dittoDimPlot(sce, "gene1_symb", swap.rownames = "symbol"),
        "ggplot")
})

test_that("dittoDimPlot allows plotting of multiple vars, via faceting", {
    expect_s3_class(
        dittoDimPlot(
            sce, c("gene1","gene2","number")),
        "ggplot")
    
    # These should have transposed facet grids
    expect_s3_class(
        print(dittoDimPlot(
            sce, c("gene1","gene2","number"),
            split.by = disc2)),
        "ggplot")
    expect_s3_class(
        print(dittoDimPlot(
            sce, c("gene1","gene2","number"),
            split.by = disc2, multivar.split.dir = "row")),
        "ggplot")
    
    expect_error(
        dittoDimPlot(
            sce, c(disc,"gene2","number")),
        "Only numeric data")
    
    expect_warning(
        dittoDimPlot(
            sce, c("gene1","gene2","number"),
            split.by = c(disc2,disc)),
        "second 'split.by' element will be ignored")
})
dtm2451/DittoSeq documentation built on May 4, 2024, 7:31 a.m.