Description Usage Arguments Value Author(s) See Also Examples
From the result of the function "ttgsea", we can predict enrichment scores. For each new term, lemmatized text, predicted enrichment score, Monte Carlo p-value and adjusted p-value are provided. The function "token_vector" is used for encoding as we did for training. Of course, mapping from tokens to integers should be the same.
1 2 | predict_model(object, new_text, num_simulations = 1000,
adj_p_method = "fdr")
|
object |
result of "ttgsea" |
new_text |
new text data |
num_simulations |
number of simulations for Monte Carlo p-value (default: 1000) |
adj_p_method |
correction method (default: "fdr") |
table for lemmatized text, predicted enrichment score, MC p-value and adjusted p-value
Dongmin Jung
stats::p.adjust
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | library(reticulate)
if (keras::is_keras_available() & reticulate::py_available()) {
library(fgsea)
data(examplePathways)
data(exampleRanks)
names(examplePathways) <- gsub("_", " ",
substr(names(examplePathways), 9, 1000))
set.seed(1)
fgseaRes <- fgsea(examplePathways, exampleRanks)
num_tokens <- 1000
length_seq <- 30
batch_size <- 32
embedding_dims <- 50
num_units <- 32
epochs <- 1
ttgseaRes <- fit_model(fgseaRes, "pathway", "NES",
model = bi_gru(num_tokens,
embedding_dims,
length_seq,
num_units),
num_tokens = num_tokens,
length_seq = length_seq,
epochs = epochs,
batch_size = batch_size,
use_generator = FALSE)
set.seed(1)
predict_model(ttgseaRes, "Cell Cycle")
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.