tests/testthat/test-plot-other.R

## Tests for other plotting functions
## library(scater); library(testthat); source("setup.R"); source("test-plot-other.R")

example_sce <- normed
colData(example_sce) <- cbind(colData(example_sce), perCellQCMetrics(example_sce))
rowData(example_sce) <- cbind(rowData(example_sce), perFeatureQCMetrics(example_sce))
rowData(example_sce)$ENS <- gsub("Gene", "ENS", rownames(example_sce))
rowData(example_sce)$ENS_e1 <- rowData(example_sce)$ENS
rowData(example_sce)$ENS_e1[1:10] <- NA
rowData(example_sce)$ENS_e2 <- "constant"

#################################################
# Testing plotPlatePosition

test_that("we can produce plots showing cells in plate position", {
    ## Define plate positions
    row <- rep(LETTERS[1:5], each = 8)
    col <- rep(1:8, 5)
    plate_position <- paste0(row, col)

    # Different types of inputs are accepted.
    expect_ggplot(plotPlatePosition(example_sce, list(row=row, column=col)))
    expect_ggplot(P <- plotPlatePosition(example_sce, plate_position))

    alt <- example_sce
    alt$plate_position <- plate_position
    expect_ggplot(plotPlatePosition(alt, colour_by="Cell_Cycle"))

    # Different types of colouring, shaping and sizing are possible.
    expect_ggplot(plotPlatePosition(alt, colour_by = "Cell_Cycle"))
    expect_ggplot(plotPlatePosition(alt, size_by = "Gene_0001"))
    expect_ggplot(plotPlatePosition(alt, shape_by = "Treatment"))

    expect_ggplot(plotPlatePosition(alt, colour_by = "Cell_Cycle", size_by = "Gene_0001"))
    expect_ggplot(plotPlatePosition(alt, colour_by = "Cell_Cycle", shape_by = "Treatment"))
    expect_ggplot(plotPlatePosition(alt, size_by = "Gene_0001", shape_by = "Treatment"))
    expect_ggplot(plotPlatePosition(alt, colour_by = "Cell_Cycle", size_by = "Gene_0001", shape_by = "Treatment"))

    expect_ggplot(plotPlatePosition(alt, colour_by = "ENS_0001", swap_rownames = "ENS"))

    expect_error(plotPlatePosition(alt, colour_by = "ENS_0001", swap_rownames = "asda"),
        "Cannot find column asda in rowData")

    expect_ggplot(plotPlatePosition(alt, size_by = "Gene_0001", shape_by = "Treatment", by_exprs_values = "counts"))

    # Checking that other arguments are passed through.
    expect_ggplot(plotPlatePosition(alt, colour_by = "Cell_Cycle", size_by = "Gene_0001", shape_by = "Treatment", add_legend = FALSE))
    expect_ggplot(plotPlatePosition(alt, size_by = "Gene_0001", by_exprs_values = "counts"))

    # Checking that an error is thrown,
    expect_error(plotPlatePosition(example_sce, paste0(col, row)), "invalid format")
})

#################################################
# Testing plotColData and plotRowData

test_that("we can produce plots for column metadata", {
    example_sce <- addPerCellQC(example_sce)

    for (y in c("detected", "Mutation_Status")) { # discrete or continuous.
        for (x in list(NULL, "sum", "Cell_Cycle")) { # nothing, discrete or continuous.
              expect_ggplot(plotColData(example_sce, x = x, y = y, colour_by = "Treatment"))
              expect_ggplot(plotColData(example_sce, x = x, y = y, size_by = "sizeFactor"))
              expect_ggplot(plotColData(example_sce, x = x, y = y, shape_by = "Treatment"))
        }
    }
    expect_ggplot(plotColData(example_sce, x = "sum", y = "detected", colour_by = "ENS_0001", swap_rownames = "ENS"))

    # Testing more visualization schemes.
    expect_ggplot(plotColData(example_sce, "sum", colour_by = "Cell_Cycle", size_by = "Gene_0001"))
    expect_ggplot(plotColData(example_sce, "sum", colour_by = "Cell_Cycle", shape_by = "Treatment"))
    expect_ggplot(plotColData(example_sce, "sum", size_by = "Gene_0001", shape_by = "Treatment"))
    expect_ggplot(plotColData(example_sce, "sum", colour_by = "Cell_Cycle", size_by = "Gene_0001", shape_by = "Treatment"))

    # Testing that other arguments are passed through.
    expect_ggplot(plotColData(example_sce, "sum", colour_by = "Cell_Cycle", size_by = "Gene_0001", shape_by = "Treatment", add_legend = FALSE))
    expect_ggplot(plotColData(example_sce, "sum", size_by = "Gene_0001", by_exprs_values = "counts"))

    # Fiddling with all the semi-analysis options.
    expect_ggplot(plotColData(example_sce, "sum", show_violin=FALSE))
    expect_ggplot(plotColData(example_sce, "sum", show_median=TRUE))
    expect_ggplot(plotColData(example_sce, "sum", jitter_type="jitter"))

    expect_ggplot(plotColData(example_sce, "sum", x="detected", show_smooth=TRUE))
    expect_ggplot(plotColData(example_sce, "sum", x="detected", show_smooth=TRUE, show_se=FALSE))

    # Checking that it doesn't try to retrieve expression data.
    expect_error(plotColData(example_sce, "Gene_0001", exprs_values = "counts"), "cannot find")
    expect_error(plotColData(example_sce, "sum", x="Gene_0001", exprs_values = "counts"), "cannot find")
})

test_that("we can produce plots for row metadata", {
    rowData(example_sce)$WHEE <- rep(LETTERS[1:6], length.out=nrow(example_sce))
    rowData(example_sce)$is_feature_control <- rbinom(nrow(example_sce), 1, 0.5)
    example_sce <- addPerFeatureQC(example_sce)

    for (y in c("mean", "is_feature_control")) { # discrete or continuous.
        for (x in list(NULL, "detected", "WHEE")) { # nothing, discrete or continuous.
              expect_ggplot(plotRowData(example_sce, x = x, y = y, colour_by = "WHEE"))
              expect_ggplot(plotRowData(example_sce, x = x, y = y, size_by = "Cell_001"))
              expect_ggplot(plotRowData(example_sce, x = x, y = y, shape_by = "WHEE"))
        }
    }

    # Testing more visualization schemes.
    expect_ggplot(plotRowData(example_sce, "mean", colour_by = "is_feature_control", size_by = "Cell_002"))
    expect_ggplot(plotRowData(example_sce, "mean", colour_by = "is_feature_control", shape_by = "WHEE"))
    expect_ggplot(plotRowData(example_sce, "mean", size_by = "Cell_002", shape_by = "WHEE"))
    expect_ggplot(plotRowData(example_sce, "mean", colour_by = "is_feature_control", size_by = "Cell_002", shape_by = "WHEE"))

    # Testing that other arguments are passed through.
    expect_ggplot(plotRowData(example_sce, "mean", colour_by = "is_feature_control", size_by = "Cell_002", shape_by = "WHEE", add_legend = FALSE))
    expect_ggplot(plotRowData(example_sce, "mean", size_by = "Cell_002", by_exprs_values = "counts"))

    # Fiddling with all the semi-analysis options.
    expect_ggplot(plotRowData(example_sce, "mean", show_violin=FALSE))
    expect_ggplot(plotRowData(example_sce, "mean", show_median=TRUE))
    expect_ggplot(plotRowData(example_sce, "mean", jitter_type="jitter"))

    expect_ggplot(plotRowData(example_sce, "mean", x="detected", show_smooth=TRUE))
    expect_ggplot(plotRowData(example_sce, "mean", x="detected", show_smooth=TRUE, show_se=FALSE))

    # Checking that it doesn't try to retrieve expression data.
    expect_error(plotRowData(example_sce, "Cell_002", exprs_values = "counts"), "cannot find")
    expect_error(plotRowData(example_sce, "mean", x="Cell_002", exprs_values = "counts"), "cannot find")
})

test_that("plotRowData works for other fields", {
    rowData(example_sce)$WHEE <- rep(LETTERS[1:10], length.out=nrow(example_sce))
    rowData(example_sce)$STUFF <- rep(letters[1:10], length.out=nrow(example_sce))

    gg <- plotRowData(example_sce, "mean",
        other_fields=c("WHEE", "STUFF"))
    expect_true("WHEE" %in% colnames(gg$data))
    expect_true("STUFF" %in% colnames(gg$data))

    # This should throw a warning.
    rowData(example_sce)$colour_by <- rowData(example_sce)$STUFF
    expect_warning(gg <- plotRowData(example_sce, "mean",
        colour_by="STUFF", other_fields=c("colour_by")), "duplicated")
})

#################################################
# Testing plotRLE

test_that("plotRLE works as expected", {
    cpm(example_sce) <- calculateCPM(example_sce)

    # With minimal or full.
    for (style in c("minimal", "full")) {
        p <- plotRLE(example_sce, style=style)
        expect_ggplot(p)

        p <- plotRLE(example_sce, colour_by = "Mutation_Status", style=style)
        expect_ggplot(p)

        p <- plotRLE(example_sce, exprs_values="cpm", exprs_logged=FALSE, style=style)
        expect_ggplot(p)

        p <- plotRLE(example_sce, colour_by = "Gene_0004", style=style)
        expect_ggplot(p)

        p <- plotRLE(example_sce, colour_by = "Gene_0004", by_exprs_values = "cpm", style=style)
        expect_ggplot(p)
    }
})

#################################################
# Testing plotDots.

test_that("plotDots works as expected", {
    expect_ggplot(plotDots(example_sce, group="Cell_Cycle", features=rownames(example_sce)[1:10]))

    expect_ggplot(plotDots(example_sce, group="Cell_Cycle", features=rownames(example_sce)[1:10], colour = rainbow(7)))

    expect_ggplot(plotDots(example_sce, group="Cell_Cycle", features=rownames(example_sce)[1:10], zlim=c(-1, 1)))

    expect_ggplot(plotDots(example_sce, group="Cell_Cycle", features=rownames(example_sce)[1:10], max_detected=0.5))

    expect_ggplot(plotDots(example_sce, features=rowData(example_sce)[1:10, "ENS"], swap_rownames = "ENS"))

    # Blocking works as expected.
    expect_ggplot(plotDots(example_sce, group="Cell_Cycle", block="Mutation_Status",
        features=rownames(example_sce)[1:10], max_detected=0.5))

    # Checking that other_fields play nice.
    rowData(example_sce)$stuff <- runif(nrow(example_sce))
    rowData(example_sce)$otherstuff <- runif(nrow(example_sce))
    expect_ggplot(p <- plotDots(example_sce, group="Cell_Cycle", features=rownames(example_sce)[1:10],
        other_fields=c("stuff", "otherstuff")))

    nuniq <- length(unique(example_sce$Cell_Cycle))
    expect_identical(p$data$stuff, rep(rowData(example_sce)$stuff[1:10], nuniq))
    expect_identical(p$data$otherstuff, rep(rowData(example_sce)$otherstuff[1:10], nuniq))
})

test_that("plotDots works w/factors", {

    counts <- matrix(rpois(100, 5), ncol = 10)
    rownames(counts) <- paste("Feature", 1:10)
    sce <- SingleCellExperiment(assays = list(counts = counts))
    sce <- logNormCounts(sce)

    p1 <- plotDots(sce, features=factor(rownames(counts), levels = paste("Feature", 10:1)))
    p2 <- plotDots(sce, features=factor(rownames(counts), levels = paste("Feature", 1:10)))
    pd1 <- p1$data
    rownames(pd1) <- pd1$Feature
    pd2 <- p2$data
    rownames(pd2) <- pd2$Feature
    expect_equal(
        pd1[as.character(pd1$Feature), "Average"],
        pd2[as.character(pd1$Feature), "Average"],
    )
})


test_that("plotDots indexing is consistent", {
    p1 <- plotDots(example_sce, features=rownames(example_sce)[1:10])
    p2 <- plotDots(example_sce, features=1:10)
    p3 <- plotDots(example_sce, features=c(rep(TRUE, 10), rep(FALSE, 1990)))
    p4 <- plotDots(example_sce, features=factor(rownames(example_sce)[1:10]))

    expect_equal(p1, p2)
    expect_equal(p2, p3)
    expect_equal(p3, p4)

    p1 <- plotDots(example_sce, features=rownames(example_sce)[10:1])
    p2 <- plotDots(example_sce, features=10:1)
    p3 <- plotDots(example_sce, features=factor(rownames(example_sce)[1:10], levels = rownames(example_sce)[10:1]))

    expect_equal(p1, p2)
    ## this has a different order but we want to check the order
    pd2 <- p2$data
    rownames(pd2) <- pd2$Feature
    pd3 <- p3$data
    rownames(pd3) <- pd3$Feature
    expect_equal(
        pd2[as.character(pd2$Feature), "Average"],
        pd3[as.character(pd2$Feature), "Average"],
    )
})


test_that("plotDots factor indexing retains order", {
    example_sce <- logNormCounts(example_sce)
    levs <- c("G1", "G2M", "S", "G0")
    example_sce$CycleF <- factor(example_sce$Cell_Cycle, levels = levs)
    p1 <- plotDots(example_sce, 1:10, group="Cell_Cycle", block="Mutation_Status")
    p2 <- plotDots(example_sce, 1:10, group = "CycleF", block = "Cell_Cycle")
    expect_equal(levels(p1$data$Group), sort(unique(example_sce$Cell_Cycle)))
    expect_equal(unique(as.character(p2$data$Group)), levs)
})


test_that("subset2index bug", {
    example_sce <- mockSCE()
    example_sce <- logNormCounts(example_sce)
    feats <- rownames(example_sce)[2000:1000]
    ffeats <- factor(feats, levels = feats)
    p1 <- plotHighestExprs(example_sce, drop_features = feats)
    p2 <- plotHighestExprs(example_sce, drop_features = ffeats)
    expect_equal(sort(p1$data$Tag), sort(p2$data$Tag))

    feats <- rownames(example_sce)[20:10]
    ffeats <- factor(feats, levels = feats)
    p1 <- plotDots(example_sce, features = feats)
    p2 <- plotDots(example_sce, features = ffeats)
    expect_equal(sort(p1$data$Tag), sort(p2$data$Tag))

    # Checking that other_fields play nice.
    rowData(example_sce)$stuff <- runif(nrow(example_sce))
    rowData(example_sce)$otherstuff <- runif(nrow(example_sce))
    p <- plotDots(example_sce, group="Cell_Cycle",
        features=rownames(example_sce)[2:10],
        other_fields=c("stuff", "otherstuff"))

    nuniq <- length(unique(example_sce$Cell_Cycle))
    expect_identical(p$data$stuff, rep(rowData(example_sce)$stuff[2:10], nuniq))
    expect_identical(p$data$otherstuff, rep(rowData(example_sce)$otherstuff[2:10], nuniq))
})

test_that("plotColData with scattermore", {
    expect_ggplot(plotColData(example_sce, x = "sum", y = "detected", scattermore = TRUE, point_size = 2))
    expect_ggplot(plotColData(example_sce, x = "sum", y = "detected", scattermore = TRUE, point_size = 2, colour_by = "sizeFactor"))
    expect_warning(plotColData(example_sce, x = "sum", y = "detected", scattermore = TRUE, shape_by = "Treatment"),
                   "do not work with scattermore")
})

test_that("plotColData with bin2d", {
    expect_ggplot(plotColData(example_sce, x = "sum", y = "detected", bins = 10))
    expect_ggplot(plotColData(example_sce, x = "sum", y = "detected", bins = 10, hex = TRUE))
    expect_ggplot(plotColData(example_sce, x = "sum", y = "detected", bins = 10, colour_by = "total"))
    expect_ggplot(plotColData(example_sce, x = "sum", y = "detected", bins = 10,
                              colour_by = "total", hex = TRUE))
    expect_warning(plotColData(example_sce, x = "sum", y = "detected", bins = 10, colour_by = "Treatment"),
                   "only applies to")
})
davismcc/scater documentation built on July 19, 2024, 2:01 a.m.