R/hotspotter.R

Defines functions hotspotter

Documented in hotspotter

#' Find hotspots of genomic events
#'
#' Find hotspots of genomic events by using kernel \link{density} estimation.
#'
#' The hotspotter uses \code{\link[stats]{density}} to perform a KDE. A p-value is calculated by comparing the density profile of the genomic events with the density profile of a randomly subsampled set of genomic events. Due to this random sampling, the result can vary for each function call, most likely for hotspots whose p-value is close to the specified \code{pval}.
#' 
#' @param gr A \code{\link{GRanges-class}} object containing the coordinates of the genomic events.
#' @param bw Bandwidth used for kernel density estimation (see \code{\link[stats]{density}}).
#' @param pval P-value cutoff for hotspots.
#' @param num.trial A number of randomly subsampled set of genomic events.
#' @return A \code{\link{GRanges-class}} object containing coordinates of hotspots with p-values.
#' @importFrom stats density runif ecdf
#' @importFrom S4Vectors endoapply
#' @import GenomicRanges
#' @author Aaron Taudt
#' @export
hotspotter <- function(gr, bw, pval=1e-8, num.trial=100) {

  set.seed(123) # fix seed for random permutations of bootstrapping
  
  ## Check if submitted set of ranges has sequence lenghs defined
  if (any(is.na(seqlengths(gr)[seqlevels(gr)]))) {
    stop("Not all seqlevels() submitted as 'gr' parameter has their seqlengths() defined!!!")
  }
  
  ## Iterate over chromosomes and calculate p-values
  pranges.list <- GenomicRanges::GRangesList()
  for (chrom in seqlevels(gr)) {
    grc <- gr[seqnames(gr) == chrom]
    if (length(grc) > 1) {
      midpoints <- (start(grc) + end(grc)) / 2
      kde <- stats::density(midpoints, bw=bw, kernel='gaussian')
      # Random distribution of genomic events
      kde.densities <- numeric()
      for (i1 in seq_len(num.trial)) {
        midpoints.r <- round(stats::runif(length(midpoints), 1, seqlengths(gr)[chrom]))
        kde.r <- stats::density(midpoints.r, bw=bw, kernel='gaussian')
        kde.densities <- c(kde.densities, kde.r$y)
      }
      # Use ecdf to calculate p-values 
      p <- 1-stats::ecdf(kde.densities)(kde$y)
      pvalues <- data.frame(chromosome=chrom,start=kde$x,pvalue=p)
      # Make GRanges
      pvalues$end <- pvalues$start
      pvalues$chromosome <- factor(pvalues$chromosome, levels=seqlevels(gr))
      pvalues <- as(pvalues,'GRanges')
      seqlevels(pvalues) <- seqlevels(gr)
      suppressWarnings(
        seqlengths(pvalues) <- seqlengths(gr)[names(seqlengths(pvalues))]
      )
      # Resize from pointsize to bandwidth
      suppressWarnings(
        pvalues <- GenomicRanges::resize(pvalues, width=bw, fix='center')
      )
      pvalues <- trim(pvalues)
      ## Find regions where p-value is below specification
      mask <- pvalues$pvalue <= pval
      rle.pvals <- rle(mask)
      rle.pvals$values <- cumsum(rle.pvals$values+1)
      pvalues$group <- inverse.rle(rle.pvals)
      if (length(which(mask))>0) {
        pvalues.split <- split(pvalues[mask],pvalues$group[mask])
        pranges <- unlist(endoapply(pvalues.split, function(x) { y <- x[1]; end(y) <- end(x)[length(x)]; y$pvalue <- min(x$pvalue); return(y) }))
        pranges$group <- NULL
        pranges$num.events <- GenomicRanges::countOverlaps(pranges, grc)
        ## Make sure only non-zero counts are reported
        pranges <- pranges[pranges$num.events > 0]
        pranges.list[[chrom]] <- pranges
      }
    }
  }
  pranges <- unlist(pranges.list, use.names=FALSE)
  names(pranges) <- NULL
  
  return(pranges)
}
daewoooo/primatR documentation built on Oct. 22, 2024, 9:41 p.m.