R/importReads.R

Defines functions readBamFileAsGRanges

Documented in readBamFileAsGRanges

#' Import BAM file into GRanges
#'
#' Import aligned reads from a BAM file into a \code{\link{GRanges-class}} object.
#'
#' @param file Bamfile with aligned reads.
#' @param bamindex Bam-index file with or without the .bai ending. If this file does not exist it will be created and a warning is issued.
#' @param chromosomes If only a subset of the chromosomes should be binned, specify them here.
#' @param pairedEndReads Set to \code{TRUE} if you have paired-end reads in your file.
#' @param min.mapq Minimum mapping quality when importing from BAM files.
#' @param remove.duplicate.reads A logical indicating whether or not duplicate reads should be kept.
#' @param pair2frgm Set to \code{TRUE} if every paired-end read should be merged into a single fragment.
#' @param filtAlt Set to \code{TRUE} if you want to filter out alternative alignments defined in 'XA' tag.
#' @return A \code{\link{GRanges-class}} object.
#' @importFrom Rsamtools indexBam scanBamHeader ScanBamParam scanBamFlag
#' @importFrom GenomicAlignments readGAlignmentPairs readGAlignments first last
#' @author David Porubsky, Aaron Taudt, Ashley Sanders
#' @export
#' @examples
#'## Get an example file 
#'exampleFolder <- system.file("extdata", "example_bams", package="breakpointRdata")
#'exampleFile <- list.files(exampleFolder, full.names=TRUE)[1]
#'## Load the file
#'fragments <- readBamFileAsGRanges(exampleFile, pairedEndReads=FALSE, chromosomes='chr22')

readBamFileAsGRanges <- function(file, bamindex=file, chromosomes=NULL, pairedEndReads=FALSE, min.mapq=10, remove.duplicate.reads=TRUE, pair2frgm=FALSE, filtAlt=FALSE) {

    ## Check if bamindex exists
    bamindex.raw <- sub('\\.bai$', '', bamindex)
    bamindex <- paste0(bamindex.raw,'.bai')
    if (!file.exists(bamindex)) {
        bamindex.own <- Rsamtools::indexBam(file)
        warning("Couldn't find BAM index-file ",bamindex,". Creating our own file ",bamindex.own," instead.")
        bamindex <- bamindex.own
    }
    file.header <- Rsamtools::scanBamHeader(file)[[1]]
    chrom.lengths <- file.header$targets
    chroms.in.data <- names(chrom.lengths)
    if (is.null(chromosomes)) {
        chromosomes <- chroms.in.data
    }
    chroms2use <- intersect(chromosomes, chroms.in.data)
    if (length(chroms2use)==0) {
        chrstring <- paste0(chromosomes, collapse=', ')
        stop('The specified chromosomes ', chrstring, ' do not exist in the data. Please try ', paste(paste0('chr',chromosomes), collapse=', '), ' instead.')
    }
    ## Issue warning for non-existent chromosomes
    diff <- setdiff(chromosomes, chroms.in.data)
    if (length(diff)>0) {
        diffs <- paste0(diff, collapse=', ')
        warning(paste0('Not using chromosomes ', diffs, ' because they are not in the data.'))
    }
    ## Import the file into GRanges
    gr <- GenomicRanges::GRanges(seqnames=chroms2use, ranges=IRanges(start=rep(1, length(chroms2use)), end=chrom.lengths[chroms2use]))
    if (!remove.duplicate.reads) {
        if (pairedEndReads) {
            if (filtAlt) {
                data.raw <- GenomicAlignments::readGAlignmentPairs(file, index=bamindex, param=Rsamtools::ScanBamParam(tag="XA", which=range(gr), what='mapq'))
            } else {
                data.raw <- GenomicAlignments::readGAlignmentPairs(file, index=bamindex, param=Rsamtools::ScanBamParam(which=range(gr), what='mapq'))  
            }
        } else {
            if (filtAlt) {
                data.raw <- GenomicAlignments::readGAlignments(file, index=bamindex, param=Rsamtools::ScanBamParam(tag="XA", which=range(gr), what='mapq'))
            } else {
                data.raw <- GenomicAlignments::readGAlignments(file, index=bamindex, param=Rsamtools::ScanBamParam(which=range(gr), what='mapq'))
            }    
        }
    } else {
        if (pairedEndReads) {
            if (filtAlt) {
                #NOTE: remove duplicates don't work if there is only one mate of the pair marked as duplicated. Suggestion force proper pairs to do it duplicate removal automatically!!!
                data.raw <- GenomicAlignments::readGAlignmentPairs(file, index=bamindex, param=Rsamtools::ScanBamParam(tag="XA", which=range(gr), what=c('mapq', 'flag')))
            } else {
                data.raw <- GenomicAlignments::readGAlignmentPairs(file, index=bamindex, param=Rsamtools::ScanBamParam(which=range(gr), what=c('mapq', 'flag')))
            }    
        } else {
            if (filtAlt) {
                data.raw <- GenomicAlignments::readGAlignments(file, index=bamindex, param=Rsamtools::ScanBamParam(tag="XA", which=range(gr), what='mapq', flag=scanBamFlag(isDuplicate=FALSE)))
            } else {
                data.raw <- GenomicAlignments::readGAlignments(file, index=bamindex, param=Rsamtools::ScanBamParam(which=range(gr), what='mapq', flag=scanBamFlag(isDuplicate=FALSE)))
            }    
        }
    }

    if (pairedEndReads) {
        if (pair2frgm) {
            if (is.null(min.mapq)) { min.mapq <- 0 }  
            #only proper pairs can be merged into single fragment (no negative ranges)
            data.prop.pairs <- data.raw[GenomicAlignments::isProperPair(data.raw)]

            data.first <- as(GenomicAlignments::first(data.prop.pairs), 'GRanges')
            data.last <- as(GenomicAlignments::last(data.prop.pairs), 'GRanges')

            ## filter XA tag
            if (filtAlt) {
                data.first <- is.na(mcols(data.first)$XA)
                data.last <- is.na(mcols(data.last)$XA)
            }
                
            mask <- data.first & data.last

            data.first <- data.first[mask]
            data.last <- data.last[mask]

            ## Filter by mapping quality and duplicate reads
            if (!is.null(min.mapq)) {
                if (any(is.na(mcols(data.first)$mapq)) | any(is.na(mcols(data.last)$mapq))) {
                    warning(paste0(file,": Reads with mapping quality NA (=255 in BAM file) found and removed. Set 'min.mapq=NULL' to keep all reads."))
                    mcols(data.first)$mapq[is.na(mcols(data.first)$mapq)] <- -1
                    mcols(data.last)$mapq[is.na(mcols(data.last)$mapq)] <- -1
                }
      
                data.first.filt <- mcols(data.first)$mapq >= min.mapq
                data.last.filt <- mcols(data.last)$mapq >= min.mapq
        
                mask <- data.first.filt & data.last.filt
        
                data.first <- data.first[mask]
                data.last <- data.last[mask]
        
                if (remove.duplicate.reads) {
                    bit.flag <- bitwAnd(1024, mcols(data.first)$flag)
                    data.first.filt <- bit.flag == 0
                    bit.flag <- bitwAnd(1024, mcols(data.last)$flag)
                    data.last.filt <- bit.flag == 0 
          
                    mask <- data.first.filt & data.last.filt
                    data.first <- data.first[mask]
                    data.last <- data.last[mask]
                }
            }    

            #split reads by directionality
            data.first.plus <- data.first[strand(data.first) == '+']
            data.first.minus <- data.first[strand(data.first) == '-']
            data.last.plus <- data.last[strand(data.last) == '+']
            data.last.minus <- data.last[strand(data.last) == '-']

            #merge pairs into a single range
            frag.plus.mapq <- data.first.plus$mapq + data.last.minus$mapq
            frag.minus.mapq <- data.first.minus$mapq + data.last.plus$mapq
    
            data.frag.plus <- GenomicRanges::GRanges(seqnames=seqnames(data.first.plus), ranges=IRanges(start=start(data.first.plus), end=end(data.last.minus)), strand=strand(data.first.plus), mapq=frag.plus.mapq)
            GenomeInfoDb::seqlengths(data.frag.plus) <- GenomeInfoDb::seqlengths(data.first)
            data.frag.minus <- GenomicRanges::GRanges(seqnames=seqnames(data.first.minus), ranges=IRanges(start=start(data.last.plus), end=end(data.first.minus)), strand=strand(data.first.minus), mapq=frag.minus.mapq)
            GenomeInfoDb::seqlengths(data.frag.minus) <- GenomeInfoDb::seqlengths(data.first)

            data <- GenomicRanges::sort(c(data.frag.plus, data.frag.minus), ignore.strand=TRUE)
            
        } else {

            data.prop.pairs <- data.raw[GenomicAlignments::isProperPair(data.raw)]
            data <- as(GenomicAlignments::first(data.prop.pairs), 'GRanges') #use only first mate of the read pair in subsequent analysis!!!
            
            ## Filter by mapping quality
            if (!is.null(min.mapq)) {
                if (any(is.na(mcols(data)$mapq))) {
                    warning(paste0(file,": Reads with mapping quality NA (=255 in BAM file) found and removed. Set 'min.mapq=NULL' to keep all reads."))
                    mcols(data)$mapq[is.na(mcols(data)$mapq)] <- -1
                }
                data <- data[mcols(data)$mapq >= min.mapq]
            }
            
            ## Filter XA tag
            if (filtAlt) {
                data <- data[is.na(mcols(data)$XA)]
            }
            ## Filter out duplicates
            if (remove.duplicate.reads) {
                bit.flag <- bitwAnd(1024, data$flag)
                mask <- bit.flag == 0
                data <- data[mask]
            }  
        }    

    } else {
        data <- as(data.raw, 'GRanges')

        ## Filter by mapping quality
        if (!is.null(min.mapq)) {
            if (any(is.na(mcols(data)$mapq))) {
                warning(paste0(file,": Reads with mapping quality NA (=255 in BAM file) found and removed. Set 'min.mapq=NULL' to keep all reads."))
                mcols(data)$mapq[is.na(mcols(data)$mapq)] <- -1
            }
            data <- data[mcols(data)$mapq >= min.mapq]
        }
        ## Filter XA tag
        if (filtAlt) {
            data <- data[is.na(mcols(data)$XA)]
        }        
    }
    GenomeInfoDb::seqlevels(data) <- GenomeInfoDb::seqlevels(gr)
    return(data)
}
daewoooo/breakpointR documentation built on May 9, 2024, 5:03 p.m.