permutation_cor: Permutations to build differential network using correlation

Description Usage Arguments Value

View source: R/helper_function.R

Description

A permutation test that randomly permutes the sample labels in distinct biological groups for each biomolecule. The difference in each paired biomolecule is considered significant if it falls into the 2.5 distribution curve.

Usage

1
2
permutation_cor(m, p, n_group_1, n_group_2, data_group_1, data_group_2,
  type_of_cor)

Arguments

m

number of permutations.

p

number of biomarker candidates.

n_group_1

number of subjects in group 1.

n_group_2

number of subjects in group 2.

data_group_1

a n*p matrix or data.frame containing group 1 data.

data_group_2

a n*p matrix of data.frame containing group 2 data.

type_of_cor

if NULL, pearson correlation coefficient will be calculated. Otherwise, a character string "spearman" to calculate spearman correlation coefficient.

Value

A multi-dimensional matrix that contains the permutation results


cx30/INDEED documentation built on May 5, 2019, 2:41 a.m.