Description Usage Arguments Value
View source: R/helper_function.R
A permutation test that randomly permutes the sample labels in distinct biological groups for each biomolecule. The difference in each paired biomolecule is considered significant if it falls into the 2.5 distribution curve.
1 2 | permutation_cor(m, p, n_group_1, n_group_2, data_group_1, data_group_2,
type_of_cor)
|
m |
number of permutations. |
p |
number of biomarker candidates. |
n_group_1 |
number of subjects in group 1. |
n_group_2 |
number of subjects in group 2. |
data_group_1 |
a n*p matrix or data.frame containing group 1 data. |
data_group_2 |
a n*p matrix of data.frame containing group 2 data. |
type_of_cor |
if NULL, pearson correlation coefficient will be calculated. Otherwise, a character string "spearman" to calculate spearman correlation coefficient. |
A multi-dimensional matrix that contains the permutation results
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.