R/shiny.R

Defines functions COBRAapp

Documented in COBRAapp

#' Interactive shiny app to visualize results
#'
#' Interactive shiny app for visualization of results. The app can be
#' initialized with a \code{COBRAData} object. If no object is provided, truth
#' and results are loaded into the app from text files (see the Instructions tab
#' of the app for formatting instructions). Properly formatted text files can
#' also be obtained using the function \code{\link{COBRAData_to_text}}.
#'
#' @param cobradata An (optional) \code{COBRAData} object. If not given, the
#'   user can load results from text files.
#' @param autorun A logical indicating whether the app calculations should start
#'   automatically on launch, or wait for the user to press the 'Start
#'   calculation!' button.
#' @param addStopButton Logical scalar. If \code{TRUE} (default), will add a
#'   button to stop the app (by calling \code{shiny::stopApp}).
#' @author Charlotte Soneson
#' @return Returns (and runs) an object representing the shiny app.
#' @import shiny
#' @import shinydashboard
#' @importFrom shinyBS bsTooltip
#' @importFrom utils packageVersion
#' @export
#' @examples
#' data(cobradata_example)
#' app <- COBRAapp(cobradata_example)
#' if (interactive()) {
#'   shiny::runApp(app)
#' }
COBRAapp <- function(cobradata = NULL, autorun = FALSE, 
                     addStopButton = TRUE) {
  ## ------------------------------------------------------------------ ##
  ##                          Define UI                                 ##
  ## ------------------------------------------------------------------ ##

  p_layout <-
    shinydashboard::dashboardPage(
      skin = "blue",

      shinydashboard::dashboardHeader(
        title = paste0("iCOBRA - interactive COmparative evaluation of ",
                       "Binary classification and RAnking methods (v", 
                       packageVersion("iCOBRA"), ")"),
        titleWidth = 950),

      shinydashboard::dashboardSidebar(
        width = 350,
        ## Settings and inputs for the truth
        shinydashboard::menuItem("Truth", icon = icon("database"),
                 ## Load the file containing the truth.
                 uiOutput("choose_truth_file"),
                 shinyBS::bsTooltip(
                   "truth", paste0("Select the file containing the true status",
                                   " of each feature. See the Instructions ",
                                   "tab for formatting instructions."),
                   "right", options = list(container = "body")),

                 ## Define the column containing the feature identifier
                 ## (for both truth and results)
                 uiOutput("choose_feature_id"),

                 ## Define the column containing the (binary) truth
                 uiOutput("choose_binary_truth"),

                 ## Define the column containing the (continuous) truth
                 uiOutput("choose_continuous_truth"),

                 ## Define the variable used to stratify the results,
                 ## based on the columns available in the truth file.
                 uiOutput("splitvar"),
                 shinyBS::bsTooltip(
                   "splitvar",
                   paste0("Select a feature attribute by which to stratify ",
                          "the result representations."),
                           "right", options = list(container = "body")),

                 ## Define the maximal number of categories to retain
                 ## in stratification.
                 uiOutput("choosemaxsplit"),
                 shinyBS::bsTooltip(
                   "choosemaxsplit",
                   paste0("Set the number of categories to show if the results",
                          " are stratified by a variable annotation. The most ",
                          "frequent categories with both positive and negative",
                          " instances will be retained"),
                   "right", options = list(container = "body")),

                 ## Decide whether or not to include the "overall" category when
                 ## stratifying the results.
                 uiOutput("chooseincludeoverall"),
                 shinyBS::bsTooltip(
                   "includeoverall",
                   paste0("Select whether or not to include the 'overall' ",
                          "class when showing stratified results."),
                   "right", options = list(container = "body"))),

        ## Settings and inputs for results
        shinydashboard::menuItem("Results", icon = icon("folder-open"),
                 ## Load the file containing the results.
                 uiOutput("choose_result_file"),
                 shinyBS::bsTooltip(
                   "file1", paste0("Select file containing results from one or",
                                   " multiple methods. See the Instructions ",
                                   "tab for formatting instructions."),
                   "right", options = list(container = "body")),

                 ## Decide which methods to include in the results.
                 ## Depends on the loaded result files.
                 uiOutput("columns"),
                 shinyBS::bsTooltip(
                   "columns",
                   paste0("Select the methods for which to show the results."),
                   "right", options = list(container = "body")),

                 ## Decide whether to base evaluations on all genes in
                 ## truth table, or only on variables for which both a truth
                 ## value and a result is provided
                 checkboxInput(
                   inputId = "onlyshared",
                   label = paste0("Calculate performance based only on ",
                                  "features shared between truth and result ",
                                  "tables."),
                   value = FALSE),
                 shinyBS::bsTooltip(
                   "onlyshared",
                   paste0("Calculate performance based only on ",
                          "features shared between truth and result ",
                          "tables. Otherwise, all features in the ",
                          "truth table will be used."),
                   "right", options = list(container = "body")),

                 actionButton("goButton", "Start calculation!",
                              icon = icon("plane"))),

        ## Plot settings
        shinydashboard::menuItem("Plot settings", icon = icon("paint-brush"),
                 ## Choose color scheme
                 selectInput(
                   "colorscheme", "Select color palette",
                   c("hue_pal", "Accent (max 7 methods)",
                     "Dark2 (max 7 methods)", "Paired (max 11 methods)",
                     "Pastel1 (max 8 methods)", "Pastel2 (max 7 methods)",
                     "Set1 (max 8 methods)", "Set2 (max 7 methods)",
                     "Set3 (max 11 methods)", "rainbow", "heat", "terrain",
                     "topo", "cm"),
                   selectize = TRUE),
                 shinyBS::bsTooltip(
                   "colorscheme",
                   paste0("Choose color palette. Some palettes are only ",
                          "applicable if the number of methods ",
                          "(or method/stratification level combinations) is ",
                          "below a certain threshold. If this threshold is ",
                          "exceeded, the colorscheme will default to hue_pal."),
                   "right", options = list(container = "body")),

                 ## Decide what to include in FDR/TPR plots.
                 checkboxGroupInput(
                   "plottype",
                   paste0("Display full curve and/or points in FDR/TPR, ",
                          "FDR/NBR and FSR/NBR plots"),
                   c("curve", "points"), c("points")),

                 ## Decide whether or not to facet plots.
                 checkboxGroupInput(
                   "facet_opt",
                   "Split plots into panels by stratifying variable",
                   "split", "split"),

                 ## Define the q-value thresholds to use in the plots.
                 textInput(inputId = "fdrthresholds", label = "FDR thresholds",
                           value = "0.01, 0.05, 0.1"),
                 shinyBS::bsTooltip("fdrthresholds",
                           paste0("Specific FDR thresholds at which the ",
                                  "performance will be evaluated. ",
                                  "Separate multiple values with comma"),
                           "right", options = list(container = "body")),

                 ## Define the s-value thresholds to use in the plots.
                 textInput(inputId = "svalthresholds", 
                           label = "s-value thresholds",
                           value = "0.01, 0.05, 0.1"),
                 shinyBS::bsTooltip("svalthresholds",
                                    paste0("Specific s-value thresholds at ", 
                                           "which the performance will be ", 
                                           "evaluated. Separate multiple ", 
                                           "values with comma"),
                                    "right", 
                                    options = list(container = "body")),

                 ## Define the plot height (in pixels).
                 numericInput(inputId = "plotheight",
                              label = "Plot height (numeric, in pixels)",
                              value = 600, min = 200, max = 2000, step = 10),
                 shinyBS::bsTooltip("plotheight",
                           paste0("The height of the plots (in pixels). ",
                                  "Default 800."),
                           "right", options = list(container = "body")),

                 ## Define the pointsize used in the plots.
                 numericInput(inputId = "pointsize", label = "Point size",
                              value = 5),
                 shinyBS::bsTooltip("pointsize",
                           paste0("The point size used in the plots."),
                           "right", options = list(container = "body")),

                 ## Define the fontsize used in the panel headers.
                 numericInput(inputId = "stripsize",
                              label = "Font size for panel headers",
                              value = 15),
                 shinyBS::bsTooltip("stripsize",
                           paste0("The font size used for panel headers in",
                                  " facetted plots."),
                           "right", options = list(container = "body"))),
        
        ## Button to close app
        shiny::uiOutput("close_app_ui")
      ),

      ## Outputs
      shinydashboard::dashboardBody(fluidRow(
        shinydashboard::tabBox(
          width = 12,

          ## Define output size of error messages
          tags$head(
            tags$style(HTML("
                            .shiny-output-error-validation {
                            font-size: 17px;
                            }
                            "))
            ),

          tabPanel("About",
                   includeMarkdown(system.file("extdata", "about.md",
                                               package = "iCOBRA")),
                   value = "about"),

          tabPanel("Instructions",
                   includeMarkdown(system.file("extdata", "instructions.md",
                                               package = "iCOBRA")),
                   value = "instructions"),
          
          tabPanel("Data preview",
                   h1("Truth"), 
                   DT::dataTableOutput("table.truth"),
                   h1("p-values"), 
                   DT::dataTableOutput("table.pval"),
                   h1("adjusted p-values"), 
                   DT::dataTableOutput("table.padj"),
                   h1("s-values"), 
                   DT::dataTableOutput("table.sval"),
                   h1("scores"), 
                   DT::dataTableOutput("table.score"),
                   value = "datapreview"),

          tabPanel("TPR vs FDR",
                   uiOutput("plot.fdrtprcurve"),
                   fluidRow(
                     column(3, sliderInput(inputId = "xrange_fdrtpr",
                                           label = "x-axis limits",
                                           min = 0, max = 1, value = c(0, 1),
                                           step = 0.01)),
                     column(3, sliderInput(inputId = "yrange_fdrtpr",
                                           label = "y-axis limits",
                                           min = 0, max = 1, value = c(0, 1),
                                           step = 0.01)),
                     column(2, br(), downloadButton("export.fdrtprcurve",
                                                    label = "Download plot")),
                     column(2, br(), downloadButton("export.fdrtpr.df.rdata",
                                                    label = "Download Rdata")),
                     column(2, br(), uiOutput("fdrtpr.df.tsv.button"))
                   ),
                   DT::dataTableOutput("fdrtprcurve_click_info"),
                   value = "fdrtprcurve"),

          tabPanel("NBR vs FDR",
                   uiOutput("plot.fdrnbrcurve"),
                   fluidRow(
                     column(4, sliderInput(inputId = "xrange_fdrnbr",
                                           label = "x-axis limits",
                                           min = 0, max = 1, value = c(0, 1),
                                           step = 0.01)),
                     column(2, br(), downloadButton("export.fdrnbrcurve",
                                                    label = "Download plot")),
                     column(2, br(), downloadButton("export.fdrnbr.df.rdata",
                                                    label = "Download Rdata")),
                     column(2, br(), uiOutput("fdrnbr.df.tsv.button"))
                   ),
                   DT::dataTableOutput("fdrnbrcurve_click_info"),
                   value = "fdrnbrcurve"),

          tabPanel("TPR", uiOutput("plot.tpr"),
                   fluidRow(
                     column(4, sliderInput(inputId = "xrange_tpr",
                                           label = "x-axis limits",
                                           min = 0, max = 1, value = c(0, 1),
                                           step = 0.01)),
                     column(2, br(), downloadButton("export.tpr",
                                                    label = "Download plot")),
                     column(2, br(), downloadButton("export.tpr.df.rdata",
                                                    label = "Download Rdata")),
                     column(2, br(), downloadButton("export.tpr.df.tsv",
                                                    label = "Download tsv"))
                   ),
                   DT::dataTableOutput("tpr_click_info"), value = "tpr"),

          tabPanel("FPR", uiOutput("plot.fpr"),
                   fluidRow(
                     column(4, sliderInput(inputId = "xrange_fpr",
                                           label = "x-axis limits",
                                           min = 0, max = 1, value = c(0, 1),
                                           step = 0.01)),
                     column(2, br(), downloadButton("export.fpr",
                                                    label = "Download plot")),
                     column(2, br(), downloadButton("export.fpr.df.rdata",
                                                    label = "Download Rdata")),
                     column(2, br(), downloadButton("export.fpr.df.tsv",
                                                    label = "Download tsv"))
                   ),
                   DT::dataTableOutput("fpr_click_info"), value = "fpr"),

          tabPanel("ROC", uiOutput("plot.roc"),
                   fluidRow(
                     column(3, sliderInput(inputId = "xrange_roc",
                                           label = "x-axis limits",
                                           min = 0, max = 1, value = c(0, 1),
                                           step = 0.01)),
                     column(3, sliderInput(inputId = "yrange_roc",
                                           label = "y-axis limits",
                                           min = 0, max = 1, value = c(0, 1),
                                           step = 0.01)),
                     column(2, br(), downloadButton("export.roc",
                                                    label = "Download plot")),
                     column(2, br(), downloadButton("export.roc.df.rdata",
                                                    label = "Download Rdata")),
                     column(2, br(), downloadButton("export.roc.df.tsv",
                                                    label = "Download tsv"))
                   ),
                   DT::dataTableOutput("roc_click_info"), value = "roc"),

          tabPanel("False discovery curves",
                   uiOutput("plot.fpc"),
                   fluidRow(
                     column(3, numericInput(inputId = "maxnfdc",
                                            label = "Maximal rank to display",
                                            value = 500, min = 10, max = 10000,
                                            step = 10)),
                     column(2, br(), downloadButton("export.fpc",
                                                    label = "Download plot")),
                     column(2, br(), downloadButton("export.fpc.df.rdata",
                                                    label = "Download Rdata")),
                     column(2, br(), downloadButton("export.fpc.df.tsv",
                                                    label = "Download tsv"))
                   ),
                   DT::dataTableOutput("fpc_click_info"), value = "fpc"),

          tabPanel("Correlation",
                   uiOutput("plot.corr"),
                   fluidRow(
                     column(3, sliderInput(inputId = "xrange_corr",
                                           label = "x-axis limits",
                                           min = -1, max = 1, value = c(-1, 1),
                                           step = 0.01)),
                     column(2, radioButtons(inputId = "corrtype",
                                            label = "Correlation measure",
                                            choices = c("pearson", "spearman"),
                                            selected = "spearman")),
                     column(2, br(), downloadButton("export.corr",
                                                    label = "Download plot")),
                     column(2, br(), downloadButton("export.corr.df.rdata",
                                                    label = "Download Rdata")),
                     column(2, br(), downloadButton("export.corr.df.tsv",
                                                    label = "Download tsv"))
                   ),
                   DT::dataTableOutput("corr_click_info"), value = "corr"),

          tabPanel("Scatter",
                   uiOutput("plot.scatter"),
                   fluidRow(
                     column(2, checkboxInput("doflip", "Flip axes", FALSE),
                            checkboxInput("dolog", "Log-transform", FALSE)),
                     column(2, br(), downloadButton("export.scatter",
                                                    label = "Download plot")),
                     column(2, br(), downloadButton("export.scatter.df.rdata",
                                                    label = "Download Rdata")),
                     column(2, br(), downloadButton("export.scatter.df.tsv",
                                                    label = "Download tsv"))
                   ),
                   DT::dataTableOutput("scatter_click_info"),
                   value = "scatter"),

          tabPanel("Deviations",
                   uiOutput("plot.deviation"),
                   fluidRow(
                     column(2, checkboxInput("dojitter",
                                             "Include jittered points", FALSE),
                            radioButtons(inputId = "devtrans",
                                         label = "Transformation",
                                         choices = c("raw", "absolute",
                                                     "squared"),
                                         selected = "raw")),
                     column(1, radioButtons(
                       inputId = "devtype", label = "Plot type",
                       choices = c("boxplot", "violinplot"),
                       selected = "violinplot")),
                     column(3, uiOutput("axislimitsdeviation")),
                     column(2, br(), downloadButton("export.deviation",
                                                    label = "Download plot")),
                     column(2, br(), downloadButton("export.deviation.df.rdata",
                                                    label = "Download Rdata")),
                     column(2, br(), downloadButton("export.deviation.df.tsv",
                                                    label = "Download tsv"))
                   ),
                   DT::dataTableOutput("deviation_click_info"),
                   value = "deviation"),

          tabPanel("Venn diagram",
                   uiOutput("plot.overlap"),
                   fluidRow(
                     column(1, radioButtons(inputId = "incltruth",
                                            label = "Include truth",
                                            choices = c("yes", "no"),
                                            selected = "yes")),
                     shinyBS::bsTooltip(
                       "incltruth",
                       paste0("Whether or nor to include the truth as a ",
                              "(perfect) method in the Venn diagrams. Note ",
                              "that maximally five methods (including the ",
                              "truth) can be included."),
                       "bottom", options = list(container = "body")),
                     column(1, radioButtons(inputId = "vennType",
                                            label = "Type of threshold",
                                            choices = c("adjp", "rank"),
                                            selected = "adjp")),
                     shinyBS::bsTooltip(
                       "vennType",
                       paste0("How to determine the set of features to ",
                              "compare between methods. "),
                       "bottom", options = list(container = "body")),
                     column(2, numericInput(
                       inputId = "adjpVenn",
                       label = "Adjusted p-value threshold",
                       value = 0.05, min = 0, max = 1, step = 0.01)),
                     shinyBS::bsTooltip(
                       "adjpVenn",
                       paste0("The adjusted p-value threshold used to extract ",
                              "the sets of significant variables to use for ",
                              "the Venn diagram. "),
                       "bottom", options = list(container = "body")),
                     column(2, numericInput(
                       inputId = "rankVenn",
                       label = "Rank threshold",
                       value = 100, min = 0, max = 1e10, step = 1)),
                     shinyBS::bsTooltip(
                       "rankVenn",
                       paste0("The rank used to extract the top-ranked ",
                              "features to compare in the Venn diagram. "),
                       "bottom", options = list(container = "body")),
                     column(2, br(), downloadButton("export.overlap",
                                                    label = "Download plot")),
                     column(2, br(), downloadButton("export.overlap.df.rdata",
                                                    label = "Download Rdata")),
                     column(2, br(), downloadButton("export.overlap.df.tsv",
                                                    label = "Download tsv"))
                   ),
                   value = "overlap"),
          
          tabPanel("UpSet plot",
                   uiOutput("plot.upset"),
                   fluidRow(
                     column(2, uiOutput("upset.stratum")),
                     column(2, radioButtons(inputId = "order.upset.by",
                                            label = "Order intersections by",
                                            choices = c("degree", "freq"),
                                            selected = "freq")),
                     column(2, radioButtons(inputId = "upset.order",
                                            label = "Order intersections",
                                            choices = c("decreasing", 
                                                        "increasing"),
                                            selected = "decreasing")),
                     column(2, br(), downloadButton("export.upset",
                                                    label = "Download plot")),
                     column(2, br(), downloadButton("export.upset.df.rdata",
                                                    label = "Download Rdata")),
                     column(2, br(), downloadButton("export.upset.df.tsv",
                                                    label = "Download tsv"))
                   ),
                   value = "upset"),
          
          tabPanel("NBR vs FSR",
                   uiOutput("plot.fsrnbrcurve"),
                   fluidRow(
                     column(4, sliderInput(inputId = "xrange_fsrnbr",
                                           label = "x-axis limits",
                                           min = 0, max = 1, value = c(0, 1),
                                           step = 0.01)),
                     column(2, br(), downloadButton("export.fsrnbrcurve",
                                                    label = "Download plot")),
                     column(2, br(), downloadButton("export.fsrnbr.df.rdata",
                                                    label = "Download Rdata")),
                     column(2, br(), uiOutput("fsrnbr.df.tsv.button"))
                   ),
                   DT::dataTableOutput("fsrnbrcurve_click_info"),
                   value = "fsrnbrcurve"),
          
          selected = "fdrtprcurve"
        )
      ))
    )

  options(shiny.maxRequestSize = 15*1024^2)
  ## ------------------------------------------------------------------ ##
  ##                          Define server                             ##
  ## ------------------------------------------------------------------ ##

  #nocov start
  server_function <- function(input, output, session) {
    values <- reactiveValues()
    values$my_cobradata <- COBRAData()

    output$choose_truth_file <- renderUI({
      if (!is.null(cobradata)) {
        NULL
      } else {
        return(fileInput(inputId = "truth", label = "Load truth file",
                         accept = c("text/csv", "text/comma-separated-values",
                                    "text/tab-separated-values", "text/plain",
                                    ".csv", ".tsv", ".tab", ".txt"),
                         multiple = FALSE))
      }
    })

    truthFile <- reactive({
      if (is.null(input$truth))
        return(NULL)
      trf <- utils::read.delim(input$truth$datapath, header = TRUE,
                               as.is = TRUE, sep = "\t", quote = "",
                               check.names = FALSE)
      isolate(values$my_cobradata <-
                COBRAData(truth = trf,
                          object_to_extend = values$my_cobradata))
      return(trf)
    })

    ## Render the UI element to choose the column containing the feature ID
    output$choose_feature_id <- renderUI({
      if (is.null(truthFile()))
        return(NULL)
      selectInput("feature_id", "Select column containing feature identifiers",
                  colnames(truthFile()), selectize = TRUE)
    })

    ## Render the UI element to choose the binary truth column
    output$choose_binary_truth <- renderUI({
      if (!is.null(cobradata)) {
        ccl <- sapply(truth(cobradata), class)
        only01 <- sapply(truth(cobradata), function(i) {
          if (all(i %in% c(0, 1, NA))) "binary"
          else "notbinary"
        })
      } else {
        if (is.null(truthFile()))
          return(NULL)
        ccl <- sapply(truthFile(), class)
        only01 <- sapply(truthFile(), function(i) {
          if (all(i %in% c(0, 1, NA))) "binary"
          else "notbinary"
        })
      }
      keepcols <- intersect(which(ccl %in% c("numeric", "integer")),
                            which(only01 == "binary"))
      if (!is.null(cobradata)) {
        selectInput("binary_truth", "Select column containing binary truth",
                    c(colnames(truth(cobradata))[keepcols], "none"),
                    selectize = TRUE)
      } else {
        selectInput("binary_truth", "Select column containing binary truth",
                    c(colnames(truthFile())[keepcols], "none"),
                    selectize = TRUE)
      }
    })

    ## Render the UI element to choose the continuous truth column
    output$choose_continuous_truth <- renderUI({
      if (!is.null(cobradata)) {
        ccl <- sapply(truth(cobradata), class)
      } else {
        if (is.null(truthFile()))
          return(NULL)
        ccl <- sapply(truthFile(), class)
      }
      keepcols <- which(ccl %in% c("numeric", "integer"))
      if (!is.null(cobradata)) {
        selectInput("cont_truth", "Select column containing continuous truth",
                    c("none", colnames(truth(cobradata))[keepcols]),
                    selectize = TRUE)
      } else {
        selectInput("cont_truth", "Select column containing continuous truth",
                    c("none", colnames(truthFile())[keepcols]),
                    selectize = TRUE)
      }
    })

    ## Render the UI element to choose which attribute (from the truth file)
    ## to split panels by.
    output$splitvar <- renderUI({
      if (!is.null(cobradata)) {
        selectInput("splv", "Select variable to stratify by",
                    c("none", colnames(truth(cobradata))), selectize = TRUE)
      } else {
        trf <- truthFile()
        if (is.null(trf))
          return(NULL)
        selectInput("splv", "Select variable to stratify by",
                    c("none", colnames(trf)), selectize = TRUE)
      }
    })

    ## Render the UI element to choose how many categories to include.
    output$choosemaxsplit <- renderUI({
      numericInput(inputId = "maxsplit",
                   label = "Maximum number of levels to show when stratifying",
                   value = 3, min = 1)
    })

    ## Render the UI element to determine whether the overall category should
    ## be included when stratifying
    output$chooseincludeoverall <- renderUI({
      radioButtons(inputId = "includeoverall",
                   label = "Include 'overall' class when stratifying",
                   choices = c("yes", "no"), selected = "yes")
    })

    ## Render the UI element to upload result file(s)
    output$choose_result_file <- renderUI({
      if (!is.null(cobradata)) {
        NULL
      } else {
        return(fileInput(inputId = "file1", label = "Add file with results",
                         accept = c("text/csv", "text/comma-separated-values",
                                    "text/tab-separated-values", "text/plain",
                                    ".csv", ".tsv"), multiple = FALSE))
      }
    })

    ## Render the UI object for selecting methods to include, based on the
    ## uploaded result files.
    output$columns <- renderUI({
      if (!is.null(cobradata)) {
        allm <- unique(c(colnames(pval(cobradata)), colnames(padj(cobradata)),
                         colnames(sval(cobradata)), colnames(score(cobradata))))
        isolate(values$my_cobradata <- cobradata)
        isolate(values$all_methods <- allm)
        isolate(values$my_cobradata <- calculate_adjp(values$my_cobradata))

        ## Create the UI element for selecting methods to include.
        checkboxGroupInput("cols", "Select methods",
                           isolate(values$all_methods),
                           isolate(values$all_methods))
      } else {
        rownames(truth(values$my_cobradata)) <-
          truth(values$my_cobradata)[, input$feature_id]

        ## Read file
        inFile <- input$file1
        if (is.null(inFile))
          return(NULL)
        v <- utils::read.delim(inFile$datapath, header = TRUE, as.is = TRUE,
                               sep = "\t", quote = "", check.names = FALSE)

        ## Perform some checks on the file, if ok then continue
        if (res_check(v)) {
          ## Extract all columns corresponding to methods
          ii <- 1

          while(ii <= ncol(v)) {
            i <- colnames(v)[ii]
            coltype <- get_coltype(i)

            if (!(is.null(coltype))) {
              ## Fix duplicates
              tmp1 <- v[, c(input$feature_id, i)]
              tmp1 <- fix_duplicates(tmp1, input$feature_id, i)

              ## Rename column to only method name
              tmp <- tmp1[i]
              rownames(tmp) <- tmp1[, input$feature_id]
              i <- gsub(":S", "", gsub(":score$", "", gsub(":adjP$", "", 
                                                           gsub(":P$", "", i))))
              colnames(tmp) <- i

              ## Add values to data collection
              isolate(values$all_methods <- unique(c(values$all_methods, i)))

              if (coltype == "pval") {
                isolate(values$my_cobradata <-
                          COBRAData(pval = tmp,
                                   object_to_extend = values$my_cobradata))
              } else if (coltype == "padj") {
                isolate(values$my_cobradata <-
                          COBRAData(padj = tmp,
                                   object_to_extend = values$my_cobradata))
              } else if (coltype == "sval") {
                isolate(values$my_cobradata <-
                          COBRAData(sval = tmp,
                                    object_to_extend = values$my_cobradata))
              } else if (coltype == "score") {
                isolate(values$my_cobradata <-
                          COBRAData(score = tmp,
                                   object_to_extend = values$my_cobradata))
              }
            }
            ii <- ii + 1
          }
          ## Calculate adjusted p-values if needed
          isolate(values$my_cobradata <- calculate_adjp(values$my_cobradata))

          ## Render the UI element
          checkboxGroupInput("cols", "Select methods",
                             isolate(values$all_methods),
                             isolate(values$all_methods))
        }
      }
    })

    plotvalues_TPR <- reactive({
      if ((input$goButton > 0 | isTRUE(autorun)) &
          input$binary_truth != "none") {
        thrs <- sort(unique(as.numeric(gsub(" ", "",
                                            unlist(strsplit(input$fdrthresholds,
                                                            ","))))))
        return(calculate_performance(values$my_cobradata,
                                     binary_truth = input$binary_truth,
                                     cont_truth = NULL,
                                     aspects = "tpr", 
                                     thrs = thrs,
                                     splv = input$splv,
                                     maxsplit = input$maxsplit,
                                     onlyshared = input$onlyshared,
                                     thr_venn = NULL,
                                     type_venn = "adjp",
                                     topn_venn = NULL))
      } else {
        return(COBRAPerformance())
      }
    })

    plotvalues_FDR <- reactive({
      if ((input$goButton > 0 | isTRUE(autorun)) &
          input$binary_truth != "none") {
        thrs <- sort(unique(as.numeric(gsub(" ", "",
                                            unlist(strsplit(input$fdrthresholds,
                                                            ","))))))
        return(calculate_performance(values$my_cobradata,
                                     binary_truth = input$binary_truth,
                                     cont_truth = NULL,
                                     aspects = "fdrtpr", 
                                     thrs = thrs,
                                     splv = input$splv,
                                     maxsplit = input$maxsplit,
                                     onlyshared = input$onlyshared,
                                     thr_venn = NULL,
                                     type_venn = "adjp",
                                     topn_venn = NULL))
      } else {
        return(COBRAPerformance())
      }
    })

    plotvalues_FPR <- reactive({
      if ((input$goButton > 0 | isTRUE(autorun)) &
          input$binary_truth != "none") {
        thrs <- sort(unique(as.numeric(gsub(" ", "",
                                            unlist(strsplit(input$fdrthresholds,
                                                            ","))))))
        return(calculate_performance(values$my_cobradata,
                                     binary_truth = input$binary_truth,
                                     cont_truth = NULL,
                                     aspects = "fpr", 
                                     thrs = thrs,
                                     splv = input$splv,
                                     maxsplit = input$maxsplit,
                                     onlyshared = input$onlyshared,
                                     thr_venn = NULL,
                                     type_venn = "adjp",
                                     topn_venn = NULL))
      } else {
        return(COBRAPerformance())
      }
    })

    plotvalues_ROC <- reactive({
      if ((input$goButton > 0 | isTRUE(autorun)) &
          input$binary_truth != "none") {
        return(calculate_performance(values$my_cobradata,
                                     binary_truth = input$binary_truth,
                                     cont_truth = NULL,
                                     aspects = "roc",
                                     thrs = NULL,
                                     splv = input$splv,
                                     maxsplit = input$maxsplit,
                                     onlyshared = input$onlyshared,
                                     thr_venn = NULL,
                                     type_venn = "adjp",
                                     topn_venn = NULL))
      } else {
        return(COBRAPerformance())
      }
    })

    plotvalues_FPC <- reactive({
      if ((input$goButton > 0 | isTRUE(autorun)) &
          input$binary_truth != "none") {
        return(calculate_performance(values$my_cobradata,
                                     binary_truth = input$binary_truth,
                                     cont_truth = NULL,
                                     aspects = "fpc", 
                                     thrs = thrs,
                                     splv = input$splv,
                                     maxsplit = input$maxsplit,
                                     onlyshared = input$onlyshared,
                                     thr_venn = NULL,
                                     type_venn = "adjp",
                                     topn_venn = NULL))
      } else {
        return(COBRAPerformance())
      }
    })

    plotvalues_FDRTPR <- reactive({
      if ((input$goButton > 0 | isTRUE(autorun)) &
          input$binary_truth != "none") {
        return(calculate_performance(values$my_cobradata,
                                     binary_truth = input$binary_truth,
                                     cont_truth = NULL,
                                     aspects = "fdrtprcurve", 
                                     thrs = thrs,
                                     splv = input$splv,
                                     maxsplit = input$maxsplit,
                                     onlyshared = input$onlyshared,
                                     thr_venn = NULL,
                                     type_venn = "adjp",
                                     topn_venn = NULL))
      } else {
        return(COBRAPerformance())
      }
    })

    plotvalues_FSR <- reactive({
      if ((input$goButton > 0 | isTRUE(autorun)) &
          input$cont_truth != "none") {
        thrs <- 
          sort(unique(as.numeric(gsub(" ", "",
                                      unlist(strsplit(input$svalthresholds,
                                                      ","))))))
        return(calculate_performance(values$my_cobradata,
                                     binary_truth = NULL,
                                     cont_truth = input$cont_truth,
                                     aspects = "fsrnbr", 
                                     svalthrs = thrs,
                                     splv = input$splv,
                                     maxsplit = input$maxsplit,
                                     onlyshared = input$onlyshared,
                                     thr_venn = NULL,
                                     type_venn = "adjp",
                                     topn_venn = NULL))
      } else {
        return(COBRAPerformance())
      }
    })
    
    plotvalues_FSRNBR <- reactive({
      if ((input$goButton > 0 | isTRUE(autorun)) &
          input$cont_truth != "none") {
        return(calculate_performance(values$my_cobradata,
                                     binary_truth = NULL,
                                     cont_truth = input$cont_truth,
                                     aspects = "fsrnbrcurve", 
                                     svalthrs = thrs,
                                     splv = input$splv,
                                     maxsplit = input$maxsplit,
                                     onlyshared = input$onlyshared,
                                     thr_venn = NULL,
                                     type_venn = "adjp",
                                     topn_venn = NULL))
      } else {
        return(COBRAPerformance())
      }
    })
    
    plotvalues_overlap <- reactive({
      if ((input$goButton > 0 | isTRUE(autorun))) {
        if (input$binary_truth == "none") {
          bt <- NULL
        } else {
          bt <- input$binary_truth
        }
        return(calculate_performance(values$my_cobradata,
                                     binary_truth = bt,
                                     cont_truth = NULL,
                                     aspects = "overlap", 
                                     thrs = NULL,
                                     splv = input$splv,
                                     maxsplit = input$maxsplit,
                                     onlyshared = input$onlyshared,
                                     thr_venn = input$adjpVenn,
                                     type_venn = input$vennType,
                                     topn_venn = input$rankVenn))
      } else {
        return(COBRAPerformance())
      }
    })
    
    plotvalues_corr <- reactive({
      if ((input$goButton > 0 | isTRUE(autorun)) &
          input$cont_truth != "none") {
        return(calculate_performance(values$my_cobradata,
                                     binary_truth = NULL,
                                     cont_truth = input$cont_truth,
                                     aspects = "corr", 
                                     thrs = NULL,
                                     splv = input$splv,
                                     maxsplit = input$maxsplit,
                                     onlyshared = input$onlyshared,
                                     thr_venn = NULL,
                                     type_venn = "adjp",
                                     topn_venn = NULL))
      } else {
        return(COBRAPerformance())
      }
    })

    plotvalues_scatter <- reactive({
      if ((input$goButton > 0 | isTRUE(autorun)) &
          input$cont_truth != "none") {
        return(calculate_performance(values$my_cobradata,
                                     binary_truth = NULL,
                                     cont_truth = input$cont_truth,
                                     aspects = "scatter", 
                                     thrs = NULL,
                                     splv = input$splv,
                                     maxsplit = input$maxsplit,
                                     onlyshared = input$onlyshared,
                                     thr_venn = NULL,
                                     type_venn = "adjp",
                                     topn_venn = NULL))
      } else {
        return(COBRAPerformance())
      }
    })

    plotvalues_deviation <- reactive({
      if ((input$goButton > 0 | isTRUE(autorun)) &
          input$cont_truth != "none") {
        return(calculate_performance(values$my_cobradata,
                                     binary_truth = NULL,
                                     cont_truth = input$cont_truth,
                                     aspects = "deviation", 
                                     thrs = NULL,
                                     splv = input$splv,
                                     maxsplit = input$maxsplit,
                                     onlyshared = input$onlyshared,
                                     thr_venn = NULL,
                                     type_venn = "adjp",
                                     topn_venn = NULL))
      } else {
        return(COBRAPerformance())
      }
    })

    plotvalues <- reactive({
      if ((input$goButton > 0 | isTRUE(autorun))) {
        ## Put together results for chosen methods
        if (length(input$cols) != 0) {
          withProgress(message = "Calculating...", value = 0, {
            all_vals <-
              COBRAPerformance(tpr = tpr(plotvalues_TPR()),
                               fdrtpr = fdrtpr(plotvalues_FDR()),
                               fdrnbr = fdrtpr(plotvalues_FDR()),
                               fdrtprcurve = fdrtprcurve(plotvalues_FDRTPR()),
                               fdrnbrcurve = fdrnbrcurve(plotvalues_FDRTPR()),
                               fsrnbr = fsrnbr(plotvalues_FSR()),
                               fsrnbrcurve = fsrnbrcurve(plotvalues_FSRNBR()),
                               fpr = fpr(plotvalues_FPR()),
                               roc = roc(plotvalues_ROC()),
                               fpc = fpc(plotvalues_FPC()),
                               overlap = overlap(plotvalues_overlap()),
                               maxsplit = input$maxsplit,
                               splv = input$splv,
                               corr = corr(plotvalues_corr()),
                               scatter = scatter(plotvalues_scatter()),
                               deviation = deviation(plotvalues_deviation()))
            
            all_vals <- prepare_data_for_plot(
              cobraperf = all_vals,
              keepmethods = input$cols,
              incloverall = (input$includeoverall == "yes"),
              colorscheme = input$colorscheme,
              facetted = ("split" %in% input$facet_opt),
              incltruth = (input$incltruth == "yes"))

            ## This is a bit of a hack, just to make the plots directly
            ## depend on the truth input. Otherwise, they will not be
            ## automatically updated if the truth file is changed
            ## (not until something else that directly affects the plots
            ## is changed as well, like the FDR thresholds or plot size etc).
            ## The title is rendered in white, so it is not visible.
            title <- input$truth$name

            list(all_vals = all_vals, title = title)
          })
        }
      } else {
        NULL
      }
    })

    
    ## -------------------------- OVERLAP ------------------------------ ##
    ## Generate Venn diagram plot
    output$plot.overlap <- renderUI({
      plotOutput("overlap", width = "100%",
                 height = paste0(input$plotheight, "px"))
    })

    ## Figure for exporting
    output$export.overlap <- downloadHandler(
      filename = "shiny-plot.pdf",
      content = function(file) {
        grDevices::pdf(file, height = 12, width = 12)
        if (length(values$all_methods) == 0 | length(input$cols) == 0)
          return(NULL)
        plot_overlap(plotvalues()$all_vals)
        grDevices::dev.off()
      })

    ## Data for exporting
    output$export.overlap.df.rdata <- downloadHandler(
      filename = "overlap-data.Rdata",
      content = function(file) {
        cobraplot <- isolate(plotvalues()$all_vals)
        save(cobraplot, file = file)
      })

    output$export.overlap.df.tsv <- downloadHandler(
      filename = "overlap-data.tsv",
      content = function(file) {
        overlap_df <- overlap(plotvalues()$all_vals)
        if (is(overlap_df, "list")) {
          overlap_df <- lapply(overlap_df,
                               function(w) cbind(feature = rownames(w), w))
          for (i in seq_len(length(overlap_df))) {
             overlap_df[[i]]$featureclass <- names(overlap_df)[i]
          }
          overlap_df <- do.call(rbind, overlap_df)
        }
        else {
          overlap_df <- cbind(feature = rownames(overlap_df), overlap_df)
        }
        utils::write.table(overlap_df, file = file, quote = FALSE,
                           row.names = FALSE, col.names = TRUE, sep = "\t")
      })

    output$overlap <- renderPlot({
      ## Generate error messages if data not available.
      validate(
        need(length(values$all_methods) > 0 & length(input$cols) > 0 &
               (input$goButton > 0 | isTRUE(autorun)),
             paste0("No input data provided, or 'Start calculation!' has ",
                    "not been clicked in order to launch calculations."))
      )
      validate(need(is_plottable(overlap(plotvalues()$all_vals)),
                    paste0("Venn diagrams can not be displayed. Check that ",
                           "binary_truth is not 'none', and that adjusted ",
                           "p-values are provided."))
      )
      validate(
        need((is(overlap(plotvalues()$all_vals), "list") &&
                ncol(overlap(plotvalues()$all_vals)[[1]]) <= 5) |
               (is(overlap(plotvalues()$all_vals), "data.frame") &&
                  ncol(overlap(plotvalues()$all_vals)) <= 5),
             paste0("Venn diagrams can not be constructed if more than five ",
                    "methods are selected (including the truth, ",
                    "if applicable)."))
      )

      withProgress(message = "Updating plot...", value = 0, {
        if (length(values$all_methods) == 0 | length(input$cols) == 0 |
            (input$goButton == 0 & !isTRUE(autorun))) {
          return(NULL)
        }

        plot_overlap(plotvalues()$all_vals)
      })
    })

    ## --------------------------- UPSET ------------------------------- ##
    ## Choose category
    output$upset.stratum <- renderUI({
      if (length(values$all_methods) == 0 | length(input$cols) == 0 |
          (input$goButton == 0 & !isTRUE(autorun)) ||
          !is_plottable(overlap(plotvalues()$all_vals)))
        return(NULL)
      else {
        if (!is(overlap(plotvalues()$all_vals), "list"))
          selectInput("upset.stratum", "Select category",
                      "overall", selectize = TRUE)
        else
          selectInput("upset.stratum", "Select category",
                      names(overlap(plotvalues()$all_vals)),
                      selectize = TRUE)
      }
    })
    
    ## Generate UpSet plot
    output$plot.upset <- renderUI({
      plotOutput("upset", width = "100%",
                 height = paste0(input$plotheight, "px"))
    })
    
    ## Figure for exporting
    output$export.upset <- downloadHandler(
      filename = "shiny-plot.pdf",
      content = function(file) {
        grDevices::pdf(file, height = 12, width = 12)
        if (length(values$all_methods) == 0 | length(input$cols) == 0)
          return(NULL)
        plot_upset(plotvalues()$all_vals, order.by = input$order.upset.by,
                   decreasing = (input$upset.order == "decreasing"),
                   stratum = input$upset.stratum)
        grDevices::dev.off()
      })
    
    ## Data for exporting
    output$export.upset.df.rdata <- downloadHandler(
      filename = "upset-data.Rdata",
      content = function(file) {
        cobraplot <- isolate(plotvalues()$all_vals)
        save(cobraplot, file = file)
      })
    
    output$export.upset.df.tsv <- downloadHandler(
      filename = "upset-data.tsv",
      content = function(file) {
        overlap_df <- overlap(plotvalues()$all_vals)
        if (is(overlap_df, "list")) {
          overlap_df <- lapply(overlap_df,
                               function(w) cbind(feature = rownames(w), w))
          for (i in seq_len(length(overlap_df))) {
            overlap_df[[i]]$featureclass <- names(overlap_df)[i]
          }
          overlap_df <- do.call(rbind, overlap_df)
        }
        else {
          overlap_df <- cbind(feature = rownames(overlap_df), overlap_df)
        }
        utils::write.table(overlap_df, file = file, quote = FALSE,
                           row.names = FALSE, col.names = TRUE, sep = "\t")
      })
    
    output$upset <- renderPlot({
      ## Generate error messages if data not available.
      validate(
        need(length(values$all_methods) > 0 & length(input$cols) > 0 &
               (input$goButton > 0 | isTRUE(autorun)),
             paste0("No input data provided, or 'Start calculation!' has ",
                    "not been clicked in order to launch calculations."))
      )
      validate(need(is_plottable(overlap(plotvalues()$all_vals)),
                    paste0("UpSet plots can not be displayed. Check that ",
                           "binary_truth is not 'none', and that adjusted ",
                           "p-values are provided."))
      )

      withProgress(message = "Updating plot...", value = 0, {
        if (length(values$all_methods) == 0 | length(input$cols) == 0 |
            (input$goButton == 0 & !isTRUE(autorun))) {
          return(NULL)
        }
        
        plot_upset(plotvalues()$all_vals, order.by = input$order.upset.by,
                   decreasing = (input$upset.order == "decreasing"),
                   stratum = input$upset.stratum)
      })
    })
    
    ## ---------------------------- TPR -------------------------------- ##
    output$plot.tpr <- renderUI({
      plotOutput("tpr", width = "100%", height = paste0(input$plotheight, "px"),
                 hover = "tpr_plot_click")
    })

    ## Figure for exporting
    output$export.tpr <- downloadHandler(
      filename = "shiny-plot.pdf",
      content = function(file) {
        grDevices::pdf(file, width = 12, height = input$plotheight/67)
        if (length(values$all_methods) == 0 | length(input$cols) == 0 |
            (input$goButton == 0 & !isTRUE(autorun)) ||
            !is_plottable(tpr(plotvalues()$all_vals)))
          return(NULL)
        print(plot_tpr(cobraplot = plotvalues()$all_vals,
                       title = plotvalues()$title,
                       stripsize = input$stripsize, titlecol = "white",
                       pointsize = input$pointsize,
                       xaxisrange = input$xrange_tpr))
        grDevices::dev.off()
      })

    ## Data for exporting
    output$export.tpr.df.rdata <- downloadHandler(
      filename = "tpr-data.Rdata",
      content = function(file) {
        cobraplot <- isolate(plotvalues()$all_vals)
        save(cobraplot, file = file)
      })

    output$export.tpr.df.tsv <- downloadHandler(
      filename = "tpr-data.tsv",
      content = function(file) {
        tpr_df <- isolate(tpr(plotvalues()$all_vals))
        utils::write.table(tpr_df, file = file, quote = FALSE,
                           row.names = FALSE, col.names = TRUE, sep = "\t")
      })

    output$tpr <- renderPlot({
      ## Generate error messages if data not available.
      validate(
        need(length(values$all_methods) > 0 & length(input$cols) > 0 &
               (input$goButton > 0 | isTRUE(autorun)),
             paste0("No input data provided, or 'Start calculation!' has ",
                    "not been clicked in order to launch calculations."))
      )
      validate(
        need(is_plottable(tpr(plotvalues()$all_vals)),
             paste0("TPR can not be displayed. Check that ",
                    "binary_truth is not 'none' and that adjusted ",
                    "p-values are provided."))
      )

      withProgress(message = "Updating plot...", value = 0, {
        if (length(values$all_methods) == 0 | length(input$cols) == 0 |
            (input$goButton == 0 & !isTRUE(autorun)) ||
            !is_plottable(tpr(plotvalues()$all_vals))) {
          return(NULL)
        }

        plot_tpr(cobraplot = plotvalues()$all_vals, title = plotvalues()$title,
                 stripsize = input$stripsize, titlecol = "white",
                 pointsize = input$pointsize, xaxisrange = input$xrange_tpr)
      })
    })

    output$tpr_click_info <- DT::renderDataTable({
      if (length(values$all_methods) == 0 | length(input$cols) == 0 |
          (input$goButton == 0 & !isTRUE(autorun)) ||
          !is_plottable(tpr(plotvalues()$all_vals)))
        return(NULL)
      all_data <- isolate(tpr(plotvalues()$all_vals))
      if ("split" %in% isolate(input$facet_opt)) {
        res <- nearPoints(all_data, input$tpr_plot_click,
                          threshold = 5, maxpoints = 100,
                          addDist = TRUE, panelvar1 = "splitval",
                          yvar = "num_method", xvar = "TPR")
      } else {
        res <- nearPoints(all_data, input$tpr_plot_click,
                          threshold = 5, maxpoints = 100,
                          addDist = TRUE, yvar = "num_method", xvar = "TPR")
      }
      fix_res(res, methodcol = "fullmethod", aspcts = c("TPR"),
              tabtype = "large")
    })

    ## ------------------------ DATA PREVIEW --------------------------- ##
    output$table.truth <- DT::renderDataTable({
      if (length(values$all_methods) == 0)
        return(NULL)
      DT::datatable(truth(values$my_cobradata))
    })
    
    output$table.pval <- DT::renderDataTable({
      if (length(values$all_methods) == 0)
        return(NULL)
      DT::datatable(pval(values$my_cobradata))
    })
    
    output$table.padj <- DT::renderDataTable({
      if (length(values$all_methods) == 0)
        return(NULL)
      DT::datatable(padj(values$my_cobradata))
    })
    
    output$table.sval <- DT::renderDataTable({
      if (length(values$all_methods) == 0)
        return(NULL)
      DT::datatable(sval(values$my_cobradata))
    })
    
    output$table.score <- DT::renderDataTable({
      if (length(values$all_methods) == 0)
        return(NULL)
      DT::datatable(score(values$my_cobradata))
    })
    
    ## ---------------------------- CORR ------------------------------- ##
    output$plot.corr <- renderUI({
      plotOutput("corr", width = "100%",
                 height = paste0(input$plotheight, "px"),
                 hover = "corr_plot_click")
    })

    ## Figure for exporting
    output$export.corr <- downloadHandler(
      filename = "shiny-plot.pdf",
      content = function(file) {
        grDevices::pdf(file, width = 12, height = input$plotheight/67)
        if (length(values$all_methods) == 0 | length(input$cols) == 0 |
            (input$goButton == 0 & !isTRUE(autorun)) ||
            !is_plottable(corr(plotvalues()$all_vals)))
          return(NULL)
        print(plot_corr(cobraplot = plotvalues()$all_vals,
                        title = plotvalues()$title,
                        stripsize = input$stripsize, titlecol = "white",
                        pointsize = input$pointsize,
                        xaxisrange = input$xrange_corr,
                        corrtype = input$corrtype))
        grDevices::dev.off()
      })

    ## Data for exporting
    output$export.corr.df.rdata <- downloadHandler(
      filename = "corr-data.Rdata",
      content = function(file) {
        cobraplot <- isolate(plotvalues()$all_vals)
        save(cobraplot, file = file)
      })

    output$export.corr.df.tsv <- downloadHandler(
      filename = "corr-data.tsv",
      content = function(file) {
        tpr_df <- isolate(corr(plotvalues()$all_vals))
        utils::write.table(tpr_df, file = file, quote = FALSE,
                           row.names = FALSE, col.names = TRUE, sep = "\t")
      })

    output$corr <- renderPlot({
      ## Generate error messages if data not available.
      validate(
        need(length(values$all_methods) > 0 & length(input$cols) > 0 &
               (input$goButton > 0 | isTRUE(autorun)),
             paste0("No input data provided, or 'Start calculation!' has ",
                    "not been clicked in order to launch calculations."))
      )
      validate(
        need(is_plottable(corr(plotvalues()$all_vals)),
             paste0("Correlation plots can not be displayed. Check that ",
                    "cont_truth is not 'none' and that scores ",
                    "are provided."))
      )

      withProgress(message = "Updating plot...", value = 0, {
        if (length(values$all_methods) == 0 | length(input$cols) == 0 |
            (input$goButton == 0 & !isTRUE(autorun)) ||
            !is_plottable(corr(plotvalues()$all_vals)))
          return(NULL)

        plot_corr(cobraplot = plotvalues()$all_vals, title = plotvalues()$title,
                  stripsize = input$stripsize, titlecol = "white",
                  pointsize = input$pointsize, xaxisrange = input$xrange_corr,
                  corrtype = input$corrtype)
      })
    })

    output$corr_click_info <- DT::renderDataTable({
      if (length(values$all_methods) == 0 | length(input$cols) == 0 |
          (input$goButton == 0 & !isTRUE(autorun)) ||
          !is_plottable(corr(plotvalues()$all_vals)))
        return(NULL)
      all_data <- isolate(corr(plotvalues()$all_vals))
      if ("split" %in% isolate(input$facet_opt)) {
        res <- nearPoints(all_data, input$corr_plot_click,
                          threshold = 5, maxpoints = 100,
                          addDist = TRUE, panelvar1 = "splitval",
                          yvar = "num_method", xvar = toupper(input$corrtype))
      } else {
        res <- nearPoints(all_data, input$corr_plot_click,
                          threshold = 5, maxpoints = 100,
                          addDist = TRUE, yvar = "num_method",
                          xvar = toupper(input$corrtype))
      }
      fix_res(res, methodcol = "fullmethod", aspcts = toupper(input$corrtype),
              tabtype = "corr")
    })

    ## -------------------------- DEVIATION ---------------------------- ##
    output$axislimitsdeviation <- renderUI({
      if (length(values$all_methods) == 0 | length(input$cols) == 0 |
          (input$goButton == 0 & !isTRUE(autorun)) ||
          !is_plottable(deviation(plotvalues()$all_vals)))
        return(NULL)
      else {
        if (input$devtrans == "raw")
          tmp <- (deviation(plotvalues()$all_vals))$DEVIATION
        else if (input$devtrans == "absolute")
          tmp <- abs((deviation(plotvalues()$all_vals))$DEVIATION)
        else
          tmp <- (deviation(plotvalues()$all_vals))$DEVIATION^2
        mn <- signif(min(tmp[is.finite(tmp)]), 3)
        mx <- signif(max(tmp[is.finite(tmp)]), 3)
        sliderInput(inputId = "xrange_deviation", label = "x-axis limits",
                    min = mn, max = mx, value = c(mn, mx))
      }
    })

    output$plot.deviation <- renderUI({
      plotOutput("deviation", width = "100%",
                 height = paste0(input$plotheight, "px"),
                 hover = "deviation_plot_click")
    })

    ## Figure for exporting
    output$export.deviation <- downloadHandler(
      filename = "shiny-plot.pdf",
      content = function(file) {
        grDevices::pdf(file, width = 12, height = input$plotheight/67)
        if (length(values$all_methods) == 0 | length(input$cols) == 0 |
            (input$goButton == 0 & !isTRUE(autorun)) ||
            !is_plottable(deviation(plotvalues()$all_vals)))
          return(NULL)
        print(plot_deviation(cobraplot = plotvalues()$all_vals,
                             title = plotvalues()$title,
                             stripsize = input$stripsize, titlecol = "white",
                             xaxisrange = input$xrange_deviation,
                             plottype = input$devtype,
                             dojitter = input$dojitter,
                             transf = input$devtrans))
        grDevices::dev.off()
      })

    ## Data for exporting
    output$export.deviation.df.rdata <- downloadHandler(
      filename = "deviation-data.Rdata",
      content = function(file) {
        cobraplot <- isolate(plotvalues()$all_vals)
        save(cobraplot, file = file)
      })

    output$export.deviation.df.tsv <- downloadHandler(
      filename = "deviation-data.tsv",
      content = function(file) {
        deviation_df <- isolate(deviation(plotvalues()$all_vals))
        utils::write.table(deviation_df, file = file, quote = FALSE,
                           row.names = FALSE, col.names = TRUE, sep = "\t")
      })

    output$deviation <- renderPlot({
      ## Generate error messages if data not available.
      validate(
        need(length(values$all_methods) > 0 & length(input$cols) > 0 &
               (input$goButton > 0 | isTRUE(autorun)),
             paste0("No input data provided, or 'Start calculation!' has ",
                    "not been clicked in order to launch calculations."))
      )
      validate(
        need(is_plottable(deviation(plotvalues()$all_vals)),
             paste0("Deviation plots can not be displayed. Check that ",
                    "cont_truth is not 'none' and that scores ",
                    "are provided."))
      )

      withProgress(message = "Updating plot...", value = 0, {
        if (length(values$all_methods) == 0 | length(input$cols) == 0 |
            (input$goButton == 0 & !isTRUE(autorun)) ||
            !is_plottable(deviation(plotvalues()$all_vals)))
          return(NULL)
        plot_deviation(cobraplot = plotvalues()$all_vals,
                       title = plotvalues()$title,
                       stripsize = input$stripsize, titlecol = "white",
                       xaxisrange = input$xrange_deviation,
                       plottype = input$devtype, dojitter = input$dojitter,
                       transf = input$devtrans)
      })
    })

    output$deviation_click_info <- DT::renderDataTable({
      if (length(values$all_methods) == 0 | length(input$cols) == 0 |
          (input$goButton == 0 & !isTRUE(autorun)) ||
          !is_plottable(deviation(plotvalues()$all_vals)))
        return(NULL)
      all_data <- isolate(deviation(plotvalues()$all_vals))

      if (input$devtrans == "absolute")
        all_data$absDEVIATION <- abs(all_data$DEVIATION)
      if (input$devtrans == "squared")
        all_data$sqDEVIATION <- all_data$DEVIATION^2

      tmp_click <- input$deviation_plot_click
      if (!is.null(tmp_click))
        tmp_click$y <- round(tmp_click$y)
      if ("split" %in% isolate(input$facet_opt)) {
        res <- nearPoints(all_data, tmp_click,
                          threshold = 50, maxpoints = 100,
                          addDist = TRUE, panelvar1 = "splitval",
                          yvar = "num_method",
                          xvar = ifelse(input$devtrans == "raw", "DEVIATION",
                                        ifelse(input$devtrans == "absolute",
                                               "absDEVIATION", "sqDEVIATION")))
      } else {
        res <- nearPoints(all_data, tmp_click,
                          threshold = 50, maxpoints = 100,
                          addDist = TRUE, yvar = "num_method",
                          xvar = ifelse(input$devtrans == "raw", "DEVIATION",
                                        ifelse(input$devtrans == "absolute",
                                               "absDEVIATION", "sqDEVIATION")))
      }
      fix_res(res, methodcol = "fullmethod",
              aspcts = ifelse(input$devtrans == "raw", "DEVIATION",
                              ifelse(input$devtrans == "absolute",
                                     "absDEVIATION", "sqDEVIATION")),
              tabtype = "deviation")
    })

    ## ---------------------------- FPR -------------------------------- ##
    output$plot.fpr <- renderUI({
      plotOutput("fpr", width = "100%", height = paste0(input$plotheight, "px"),
                 hover = "fpr_plot_click")
    })

    ## Figure for exporting
    output$export.fpr <- downloadHandler(
      filename = "shiny-plot.pdf",
      content = function(file) {
        grDevices::pdf(file, width = 12, height = input$plotheight/67)
        if (length(values$all_methods) == 0 | length(input$cols) == 0 |
            (input$goButton == 0 & !isTRUE(autorun)) ||
            !is_plottable(fpr(plotvalues()$all_vals)))
          return(NULL)
        print(plot_fpr(cobraplot = plotvalues()$all_vals,
                       title = plotvalues()$title,
                       stripsize = input$stripsize, titlecol = "white",
                       pointsize = input$pointsize,
                       xaxisrange = input$xrange_fpr))
        grDevices::dev.off()
      })

    ## Data for exporting
    output$export.fpr.df.rdata <- downloadHandler(
      filename = "fpr-data.Rdata",
      content = function(file) {
        cobraplot <- isolate(plotvalues()$all_vals)
        save(cobraplot, file = file)
      })

    output$export.fpr.df.tsv <- downloadHandler(
      filename = "fpr-data.tsv",
      content = function(file) {
        fpr_df <- isolate(fpr(plotvalues()$all_vals))
        utils::write.table(fpr_df, file = file, quote = FALSE,
                           row.names = FALSE, col.names = TRUE, sep = "\t")
      })

    output$fpr <- renderPlot({
      ## Generate error messages if data not available.
      validate(
        need(length(values$all_methods) > 0 & length(input$cols) > 0 &
               (input$goButton > 0 | isTRUE(autorun)),
             paste0("No input data provided, or 'Start calculation!' has ",
                    "not been clicked in order to launch calculations."))
      )
      validate(
        need(is_plottable(fpr(plotvalues()$all_vals)),
             paste0("FPR can not be displayed. Check that ",
                    "binary_truth is not 'none' and that adjusted ",
                    "p-values are provided."))
      )

      withProgress(message = "Updating plot...", value = 0, {
        if (length(values$all_methods) == 0 | length(input$cols) == 0 |
            (input$goButton == 0 & !isTRUE(autorun)) ||
            !is_plottable(fpr(plotvalues()$all_vals)))
          return(NULL)
        plot_fpr(cobraplot = plotvalues()$all_vals, title = plotvalues()$title,
                 stripsize = input$stripsize, titlecol = "white",
                 pointsize = input$pointsize, xaxisrange = input$xrange_fpr)
      })
    })

    output$fpr_click_info <- DT::renderDataTable({
      if (length(values$all_methods) == 0 | length(input$cols) == 0 |
          (input$goButton == 0 & !isTRUE(autorun)) ||
          !is_plottable(fpr(plotvalues()$all_vals)))
        return(NULL)
      all_data <- isolate(fpr(plotvalues()$all_vals))
      if ("split" %in% isolate(input$facet_opt)) {
        res <- nearPoints(all_data, input$fpr_plot_click,
                          threshold = 5, maxpoints = 100,
                          addDist = TRUE, panelvar1 = "splitval",
                          yvar = "num_method", xvar = "FPR")
      } else {
        res <- nearPoints(all_data, input$fpr_plot_click,
                          threshold = 5, maxpoints = 100,
                          addDist = TRUE, yvar = "num_method", xvar = "FPR")
      }
      fix_res(res, methodcol = "fullmethod", aspcts = c("FPR"),
              tabtype = "large")
    })

    ## ---------------------------- ROC -------------------------------- ##
    output$plot.roc <- renderUI({
      plotOutput("roc", width = "100%", height = paste0(input$plotheight, "px"),
                 hover = "roc_plot_click")
    })

    ## Figure for exporting
    output$export.roc <- downloadHandler(
      filename = "shiny-plot.pdf",
      content = function(file) {
        grDevices::pdf(file, width = 12, height = input$plotheight/67)
        if (length(values$all_methods) == 0 | length(input$cols) == 0 |
            (input$goButton == 0 & !isTRUE(autorun)) ||
            !is_plottable(roc(plotvalues()$all_vals)))
          return(NULL)
        print(plot_roc(cobraplot = plotvalues()$all_vals,
                       title = plotvalues()$title,
                       stripsize = input$stripsize, titlecol = "white",
                       xaxisrange = input$xrange_roc,
                       yaxisrange = input$yrange_roc,
                       linewidth = 1))
        grDevices::dev.off()
      })

    ## Data for exporting
    output$export.roc.df.rdata <- downloadHandler(
      filename = "roc-data.Rdata",
      content = function(file) {
        cobraplot <- isolate(plotvalues()$all_vals)
        save(cobraplot, file = file)
      })

    output$export.roc.df.tsv <- downloadHandler(
      filename = "roc-data.tsv",
      content = function(file) {
        roc_df <- isolate(roc(plotvalues()$all_vals))
        utils::write.table(roc_df, file = file, quote = FALSE,
                           row.names = FALSE, col.names = TRUE, sep = "\t")
      })

    output$roc <- renderPlot({
      ## Generate error messages if data not available.
      validate(
        need(length(values$all_methods) > 0 & length(input$cols) > 0 &
               (input$goButton > 0 | isTRUE(autorun)),
             paste0("No input data provided, or 'Start calculation!' has ",
                    "not been clicked in order to launch calculations."))
      )
      validate(
        need(is_plottable(roc(plotvalues()$all_vals)),
             paste0("ROC curves can not be displayed. Check that ",
                    "binary_truth is not 'none'."))
      )

      withProgress(message = "Updating plot...", value = 0, {
        if (length(values$all_methods) == 0 | length(input$cols) == 0 |
            (input$goButton == 0 & !isTRUE(autorun)) ||
            !is_plottable(roc(plotvalues()$all_vals)))
          return(NULL)
        plot_roc(cobraplot = plotvalues()$all_vals, title = plotvalues()$title,
                 stripsize = input$stripsize, titlecol = "white",
                 xaxisrange = input$xrange_roc, yaxisrange = input$yrange_roc,
                 linewidth = 1)
      })
    })

    output$roc_click_info <- DT::renderDataTable({
      if (length(values$all_methods) == 0 | length(input$cols) == 0 |
          (input$goButton == 0 & !isTRUE(autorun)) ||
          !is_plottable(roc(plotvalues()$all_vals)))
        return(NULL)

      all_data <- isolate(roc(plotvalues()$all_vals))
      if ("split" %in% isolate(input$facet_opt)) {
        res <- nearPoints(all_data, input$roc_plot_click,
                          threshold = 5, maxpoints = 100,
                          addDist = TRUE, panelvar1 = "splitval",
                          xvar = "FPR", yvar = "TPR")
      } else {
        res <- nearPoints(all_data, input$roc_plot_click,
                          threshold = 5, maxpoints = 100,
                          addDist = TRUE, xvar = "FPR", yvar = "TPR")
      }
      fix_res(res, methodcol = "fullmethod", aspcts = c("FPR", "TPR"),
              tabtype = "small")
    })

    ## -------------------------- SCATTER ------------------------------ ##
    output$plot.scatter <- renderUI({
      plotOutput("scatter", width = "100%",
                 height = paste0(input$plotheight, "px"),
                 hover = "scatter_plot_click")
    })

    ## Figure for exporting
    output$export.scatter <- downloadHandler(
      filename = "shiny-plot.pdf",
      content = function(file) {
        grDevices::pdf(file, width = 12, height = input$plotheight/67)
        if (length(values$all_methods) == 0 | length(input$cols) == 0 |
            (input$goButton == 0 & !isTRUE(autorun)) ||
            !is_plottable(scatter(plotvalues()$all_vals)))
          return(NULL)
        print(plot_scatter(cobraplot = plotvalues()$all_vals,
                           title = plotvalues()$title,
                           stripsize = input$stripsize, titlecol = "white",
                           pointsize = input$pointsize, doflip = input$doflip,
                           dolog = input$dolog))
        grDevices::dev.off()
      })

    ## Data for exporting
    output$export.scatter.df.rdata <- downloadHandler(
      filename = "scatter-data.Rdata",
      content = function(file) {
        cobraplot <- isolate(plotvalues()$all_vals)
        save(cobraplot, file = file)
      })

    output$export.scatter.df.tsv <- downloadHandler(
      filename = "scatter-data.tsv",
      content = function(file) {
        scatter_df <- isolate(scatter(plotvalues()$all_vals))
        utils::write.table(scatter_df, file = file, quote = FALSE,
                           row.names = FALSE, col.names = TRUE, sep = "\t")
      })

    output$scatter <- renderPlot({
      ## Generate error messages if data not available.
      validate(
        need(length(values$all_methods) > 0 & length(input$cols) > 0 &
               (input$goButton > 0 | isTRUE(autorun)),
             paste0("No input data provided, or 'Start calculation!' has ",
                    "not been clicked in order to launch calculations."))
      )
      validate(
        need(is_plottable(scatter(plotvalues()$all_vals)),
             paste0("Scatter plots can not be displayed. Check that ",
                    "cont_truth is not 'none' and that scores ",
                    "are provided."))
      )

      withProgress(message = "Updating plot...", value = 0, {
        if (length(values$all_methods) == 0 | length(input$cols) == 0 |
            (input$goButton == 0 & !isTRUE(autorun)) ||
            !is_plottable(scatter(plotvalues()$all_vals)))
          return(NULL)
        plot_scatter(cobraplot = plotvalues()$all_vals,
                     title = plotvalues()$title,
                     stripsize = input$stripsize, titlecol = "white",
                     pointsize = input$pointsize, doflip = input$doflip,
                     dolog = input$dolog)
      })
    })

    output$scatter_click_info <- DT::renderDataTable({
      if (length(values$all_methods) == 0 | length(input$cols) == 0 |
          (input$goButton == 0 & !isTRUE(autorun)) ||
          !is_plottable(scatter(plotvalues()$all_vals)))
        return(NULL)

      all_data <- isolate(scatter(plotvalues()$all_vals))
      if ("split" %in% isolate(input$facet_opt)) {
        res <- nearPoints(all_data, input$scatter_plot_click,
                          threshold = 5, maxpoints = 100,
                          addDist = TRUE, xvar = "OBSERVATION",
                          yvar = "TRUTH")
      } else {
        res <- nearPoints(all_data, input$scatter_plot_click,
                          threshold = 5, maxpoints = 100,
                          addDist = TRUE, xvar = "OBSERVATION", yvar = "TRUTH")
      }
      fix_res(res, methodcol = "fullmethod", aspcts = c("observation", "truth"),
              tabtype = "scatter")
    })

    ## ---------------------------- FPC -------------------------------- ##
    output$plot.fpc <- renderUI({
      plotOutput("fpc", width = "100%", height = paste0(input$plotheight, "px"),
                 hover = "fpc_plot_click")
    })

    ## Figure for exporting
    output$export.fpc <- downloadHandler(
      filename = "shiny-plot.pdf",
      content = function(file) {
        grDevices::pdf(file, width = 12, height = input$plotheight/67)
        if (length(values$all_methods) == 0 | length(input$cols) == 0 |
            (input$goButton == 0 & !isTRUE(autorun)) ||
            !is_plottable(fpc(plotvalues()$all_vals)))
          return(NULL)
        print(plot_fpc(cobraplot = plotvalues()$all_vals,
                       title = plotvalues()$title,
                       stripsize = input$stripsize, titlecol = "white",
                       maxnfdc = input$maxnfdc,
                       linewidth = 1))
        grDevices::dev.off()
      })

    ## Data for exporting
    output$export.fpc.df.rdata <- downloadHandler(
      filename = "fpc-data.Rdata",
      content = function(file) {
        cobraplot <- isolate(plotvalues()$all_vals)
        save(cobraplot, file = file)
      })

    output$export.fpc.df.tsv <- downloadHandler(
      filename = "fpc-data.tsv",
      content = function(file) {
        fpc_df <- isolate(fpc(plotvalues()$all_vals))
        utils::write.table(fpc_df, file = file, quote = FALSE,
                           row.names = FALSE, col.names = TRUE, sep = "\t")
      })

    output$fpc <- renderPlot({
      ## Generate error messages if data not available.
      validate(
        need(length(values$all_methods) > 0 & length(input$cols) > 0 &
               (input$goButton > 0 | isTRUE(autorun)),
             paste0("No input data provided, or 'Start calculation!' has ",
                    "not been clicked in order to launch calculations."))
      )
      validate(
        need(is_plottable(fpc(plotvalues()$all_vals)),
             paste0("False discovery curves can not be displayed. Check that ",
                    "binary_truth is not 'none'."))
      )

      withProgress(message = "Updating plot...", value = 0, {
        if (length(values$all_methods) == 0 | length(input$cols) == 0 |
            (input$goButton == 0 & !isTRUE(autorun)) ||
            !is_plottable(fpc(plotvalues()$all_vals)))
          return(NULL)

        plot_fpc(cobraplot = plotvalues()$all_vals, title = plotvalues()$title,
                 stripsize = input$stripsize, titlecol = "white",
                 maxnfdc = input$maxnfdc,
                 linewidth = 1)
      })
    })

    output$fpc_click_info <- DT::renderDataTable({
      if (length(values$all_methods) == 0 | length(input$cols) == 0 |
          (input$goButton == 0 & !isTRUE(autorun)) ||
          !is_plottable(fpc(plotvalues()$all_vals)))
        return(NULL)
      all_data <- isolate(fpc(plotvalues()$all_vals))
      if ("split" %in% isolate(input$facet_opt)) {
        res <- nearPoints(all_data, input$fpc_plot_click,
                          threshold = 5, maxpoints = 100,
                          addDist = TRUE, panelvar1 = "splitval",
                          xvar = "topN", yvar = "FP")
      } else {
        res <- nearPoints(all_data, input$fpc_plot_click,
                          threshold = 5, maxpoints = 100,
                          addDist = TRUE, xvar = "topN", yvar = "FP")
      }
      fix_res(res, methodcol = "fullmethod",
              aspcts = c("Number of detections", "FP"), tabtype = "small")
    })

    ## -------------------------- FDRTPR ------------------------------- ##
    output$plot.fdrtprcurve <- renderUI({
      plotOutput("fdrtprcurve", width = "100%",
                 height = paste0(input$plotheight, "px"),
                 hover = "fdrtprcurve_plot_click")
    })

    ## Figure for exporting
    output$export.fdrtprcurve <- downloadHandler(
      filename = "shiny-plot.pdf",
      content = function(file) {
        grDevices::pdf(file, width = 12, height = input$plotheight/67)
        if (length(values$all_methods) == 0 | length(input$cols) == 0 |
            (input$goButton == 0 & !isTRUE(autorun)) ||
            !is_plottable(fdrtprcurve(plotvalues()$all_vals)))
          return(NULL)
        print(plot_fdrtprcurve(cobraplot = plotvalues()$all_vals,
                               title = plotvalues()$title,
                               stripsize = input$stripsize, titlecol = "white",
                               pointsize = input$pointsize,
                               xaxisrange = input$xrange_fdrtpr,
                               yaxisrange = input$yrange_fdrtpr,
                               plottype = input$plottype,
                               linewidth = 1))
        grDevices::dev.off()
      })

    ## Data for exporting
    output$export.fdrtpr.df.rdata <- downloadHandler(
      filename = "fdrtpr-data.Rdata",
      content = function(file) {
        cobraplot <- isolate(plotvalues()$all_vals)
        save(cobraplot, file = file)
      })

    output$fdrtpr.df.tsv.button <- renderUI({
      if ("curve" %in% input$plottype)
        downloadButton("export.fdrtpr.df.tsv", label = "Download tsv (curve)")
      else
        downloadButton("export.fdrtpr.df.tsv", label = "Download tsv (points)")
    })

    output$export.fdrtpr.df.tsv <- downloadHandler(
      filename = "fdrtpr-data.tsv",
      content = function(file) {
        fdrtpr_curve_df <- isolate(fdrtprcurve(plotvalues()$all_vals))
        fdrtpr_point_df <- isolate(fdrtpr(plotvalues()$all_vals))
        if ("curve" %in% input$plottype)
          utils::write.table(fdrtpr_curve_df, file = file, quote = FALSE,
                             row.names = FALSE, col.names = TRUE, sep = "\t")
        else if ("points" %in% input$plottype)
          utils::write.table(fdrtpr_point_df, file = file, quote = FALSE,
                             row.names = FALSE, col.names = TRUE, sep = "\t")
      })

    output$fdrtprcurve <- renderPlot({
      ## Generate error messages if data not available.
      validate(
        need(length(values$all_methods) > 0 & length(input$cols) > 0 &
               (input$goButton > 0 | isTRUE(autorun)),
             paste0("No input data provided, or 'Start calculation!' has ",
                    "not been clicked in order to launch calculations."))
      )
      validate(need(any(c("points", "curve") %in% input$plottype),
                    "No plot type selected.")
      )
      if ("curve" %in% input$plottype)
        validate(
          need(is_plottable(fdrtprcurve(plotvalues()$all_vals)),
               paste0("FDR/TPR curves can not be displayed. Check that ",
                      "binary_truth is not 'none'."))
        )
      if ("points" %in% input$plottype)
        validate(
          need(is_plottable(fdrtpr(plotvalues()$all_vals)),
               paste0("FDR/TPR at specified adjusted p-value thresholds ",
                      "can not be displayed. Check that binary_truth is not ",
                      "'none' and that adjusted p-values are provided."))
        )

      withProgress(message = "Updating plot...", value = 0, {
        if (length(values$all_methods) == 0 | length(input$cols) == 0 |
            (input$goButton == 0 & !isTRUE(autorun)))
          return(NULL)
        if ("curve" %in% input$plottype &
            !is_plottable(fdrtprcurve(plotvalues()$all_vals)))
          return(NULL)
        if ("points" %in% input$plottype &
            !is_plottable(fdrtpr(plotvalues()$all_vals)))
          return(NULL)
        if (!any(c("curve", "points") %in% input$plottype))
          return(NULL)
        plot_fdrtprcurve(cobraplot = plotvalues()$all_vals,
                         title = plotvalues()$title,
                         stripsize = input$stripsize, titlecol = "white",
                         pointsize = input$pointsize,
                         xaxisrange = input$xrange_fdrtpr,
                         yaxisrange = input$yrange_fdrtpr,
                         plottype = input$plottype,
                         linewidth = 1)
      })
    })

    output$fdrtprcurve_click_info <- DT::renderDataTable({
      if (length(values$all_methods) == 0 | length(input$cols) == 0 |
          (input$goButton == 0 & !isTRUE(autorun)))
        return(NULL)
      if ("curve" %in% input$plottype &
          !is_plottable(fdrtprcurve(plotvalues()$all_vals)))
        return(NULL)
      if ("points" %in% input$plottype &
          !is_plottable(fdrtpr(plotvalues()$all_vals)))
        return(NULL)
      if ("curve" %in% input$plottype)
        tab_data <- isolate(fdrtprcurve(plotvalues()$all_vals))
      else tab_data <- isolate(fdrtpr(plotvalues()$all_vals))
      if ("split" %in% isolate(input$facet_opt)) {
        res <- nearPoints(tab_data, input$fdrtprcurve_plot_click,
                          threshold = 5, maxpoints = 100,
                          addDist = TRUE, panelvar1 = "splitval",
                          xvar = "FDR", yvar = "TPR")
      } else {
        res <- nearPoints(tab_data, input$fdrtprcurve_plot_click,
                          threshold = 5, maxpoints = 100,
                          addDist = TRUE, xvar = "FDR", yvar = "TPR")
      }
      fix_res(res, methodcol = "fullmethod", aspcts = c("FDR", "TPR"),
              tabtype = "large")
    })

    ## -------------------------- FDRNBR ------------------------------- ##
    output$plot.fdrnbrcurve <- renderUI({
      plotOutput("fdrnbrcurve", width = "100%",
                 height = paste0(input$plotheight, "px"),
                 hover = "fdrnbrcurve_plot_click")
    })

    ## Figure for exporting
    output$export.fdrnbrcurve <- downloadHandler(
      filename = "shiny-plot.pdf",
      content = function(file) {
        grDevices::pdf(file, width = 12, height = input$plotheight/67)
        if (length(values$all_methods) == 0 | length(input$cols) == 0 |
            (input$goButton == 0 & !isTRUE(autorun)) ||
            !is_plottable(fdrnbrcurve(plotvalues()$all_vals)))
          return(NULL)
        print(plot_fdrnbrcurve(cobraplot = plotvalues()$all_vals,
                               title = plotvalues()$title,
                               stripsize = input$stripsize, titlecol = "white",
                               pointsize = input$pointsize,
                               xaxisrange = input$xrange_fdrnbr,
                               plottype = input$plottype,
                               linewidth = 1))
        grDevices::dev.off()
      })

    ## Data for exporting
    output$export.fdrnbr.df.rdata <- downloadHandler(
      filename = "fdrnbr-data.Rdata",
      content = function(file) {
        cobraplot <- isolate(plotvalues()$all_vals)
        save(cobraplot, file = file)
      })

    output$fdrnbr.df.tsv.button <- renderUI({
      if ("curve" %in% input$plottype)
        downloadButton("export.fdrnbr.df.tsv", label = "Download tsv (curve)")
      else
        downloadButton("export.fdrnbr.df.tsv", label = "Download tsv (points)")
    })

    output$export.fdrnbr.df.tsv <- downloadHandler(
      filename = "fdrnbr-data.tsv",
      content = function(file) {
        fdrnbr_curve_df <- isolate(fdrnbrcurve(plotvalues()$all_vals))
        fdrnbr_point_df <- isolate(fdrnbr(plotvalues()$all_vals))
        if ("curve" %in% input$plottype)
          utils::write.table(fdrnbr_curve_df, file = file, quote = FALSE,
                             row.names = FALSE, col.names = TRUE, sep = "\t")
        else if ("points" %in% input$plottype)
          utils::write.table(fdrnbr_point_df, file = file, quote = FALSE,
                             row.names = FALSE, col.names = TRUE, sep = "\t")
      })


    output$fdrnbrcurve <- renderPlot({
      ## Generate error messages if data not available.
      validate(
        need(length(values$all_methods) > 0 & length(input$cols) > 0 &
               (input$goButton > 0 | isTRUE(autorun)),
             paste0("No input data provided, or 'Start calculation!' has ",
                    "not been clicked in order to launch calculations."))
      )
      validate(need(any(c("points", "curve") %in% input$plottype),
                    "No plot type selected.")
      )
      if ("curve" %in% input$plottype)
        validate(
          need(is_plottable(fdrnbrcurve(plotvalues()$all_vals)),
               paste0("FDR/NBR curves can not be displayed. Check that ",
                      "binary_truth is not 'none'."))
        )
      if ("points" %in% input$plottype)
        validate(
          need(is_plottable(fdrnbr(plotvalues()$all_vals)),
               paste0("FDR/NBR at specified adjusted p-value thresholds ",
                      "can not be displayed. Check that binary_truth is not ",
                      "'none' and that adjusted p-values are provided."))
        )

      withProgress(message = "Updating plot...", value = 0, {
        if (length(values$all_methods) == 0 | length(input$cols) == 0 |
            (input$goButton == 0 & !isTRUE(autorun)))
          return(NULL)
        if ("curve" %in% input$plottype &
            !is_plottable(fdrnbrcurve(plotvalues()$all_vals)))
          return(NULL)
        if ("points" %in% input$plottype &
            !is_plottable(fdrnbr(plotvalues()$all_vals)))
          return(NULL)
        if (!any(c("curve", "points") %in% input$plottype))
          return(NULL)
        plot_fdrnbrcurve(cobraplot = plotvalues()$all_vals,
                         title = plotvalues()$title,
                         stripsize = input$stripsize, titlecol = "white",
                         pointsize = input$pointsize,
                         xaxisrange = input$xrange_fdrnbr,
                         plottype = input$plottype,
                         linewidth = 1)
      })
    })

    output$fdrnbrcurve_click_info <- DT::renderDataTable({
      if (length(values$all_methods) == 0 | length(input$cols) == 0 |
          (input$goButton == 0 & !isTRUE(autorun)))
        return(NULL)
      if ("curve" %in% input$plottype &
          !is_plottable(fdrnbrcurve(plotvalues()$all_vals)))
        return(NULL)
      if ("points" %in% input$plottype &
          !is_plottable(fdrnbr(plotvalues()$all_vals)))
        return(NULL)
      if ("curve" %in% input$plottype)
        tab_data <- isolate(fdrnbrcurve(plotvalues()$all_vals))
      else tab_data <- isolate(fdrnbr(plotvalues()$all_vals))
      if ("split" %in% input$facet_opt) {
        res <- nearPoints(tab_data, input$fdrnbrcurve_plot_click,
                          threshold = 5, maxpoints = 100,
                          addDist = TRUE, panelvar1 = "splitval",
                          xvar = "FDR", yvar = "NBR")
      } else {
        res <- nearPoints(tab_data, input$fdrnbrcurve_plot_click,
                          threshold = 5, maxpoints = 100,
                          addDist = TRUE, xvar = "FDR", yvar = "NBR")
      }
      methodcol <- "fullmethod"
      fix_res(res, methodcol = methodcol,
              aspcts = c("FDR", "Number of detections"), tabtype = "large")
    })

    ## -------------------------- FSRNBR ------------------------------- ##
    output$plot.fsrnbrcurve <- renderUI({
      plotOutput("fsrnbrcurve", width = "100%",
                 height = paste0(input$plotheight, "px"),
                 hover = "fsrnbrcurve_plot_click")
    })
    
    ## Figure for exporting
    output$export.fsrnbrcurve <- downloadHandler(
      filename = "shiny-plot.pdf",
      content = function(file) {
        grDevices::pdf(file, width = 12, height = input$plotheight/67)
        if (length(values$all_methods) == 0 | length(input$cols) == 0 |
            (input$goButton == 0 & !isTRUE(autorun)) ||
            !is_plottable(fsrnbrcurve(plotvalues()$all_vals)))
          return(NULL)
        print(plot_fsrnbrcurve(cobraplot = plotvalues()$all_vals,
                               title = plotvalues()$title,
                               stripsize = input$stripsize, titlecol = "white",
                               pointsize = input$pointsize,
                               xaxisrange = input$xrange_fsrnbr,
                               plottype = input$plottype,
                               linewidth = 1))
        grDevices::dev.off()
      })
    
    ## Data for exporting
    output$export.fsrnbr.df.rdata <- downloadHandler(
      filename = "fsrnbr-data.Rdata",
      content = function(file) {
        cobraplot <- isolate(plotvalues()$all_vals)
        save(cobraplot, file = file)
      })
    
    output$fsrnbr.df.tsv.button <- renderUI({
      if ("curve" %in% input$plottype)
        downloadButton("export.fsrnbr.df.tsv", label = "Download tsv (curve)")
      else
        downloadButton("export.fsrnbr.df.tsv", label = "Download tsv (points)")
    })
    
    output$export.fsrnbr.df.tsv <- downloadHandler(
      filename = "fsrnbr-data.tsv",
      content = function(file) {
        fsrnbr_curve_df <- isolate(fsrnbrcurve(plotvalues()$all_vals))
        fsrnbr_point_df <- isolate(fsrnbr(plotvalues()$all_vals))
        if ("curve" %in% input$plottype)
          utils::write.table(fsrnbr_curve_df, file = file, quote = FALSE,
                             row.names = FALSE, col.names = TRUE, sep = "\t")
        else if ("points" %in% input$plottype)
          utils::write.table(fsrnbr_point_df, file = file, quote = FALSE,
                             row.names = FALSE, col.names = TRUE, sep = "\t")
      })
    
    
    output$fsrnbrcurve <- renderPlot({
      ## Generate error messages if data not available.
      validate(
        need(length(values$all_methods) > 0 & length(input$cols) > 0 &
               (input$goButton > 0 | isTRUE(autorun)),
             paste0("No input data provided, or 'Start calculation!' has ",
                    "not been clicked in order to launch calculations."))
      )
      validate(need(any(c("points", "curve") %in% input$plottype),
                    "No plot type selected.")
      )
      if ("curve" %in% input$plottype)
        validate(
          need(is_plottable(fsrnbrcurve(plotvalues()$all_vals)),
               paste0("FSR/NBR curves can not be displayed. Check that ",
                      "cont_truth is not 'none' and that s-values ", 
                      "are provided."))
        )
      if ("points" %in% input$plottype)
        validate(
          need(is_plottable(fsrnbr(plotvalues()$all_vals)),
               paste0("FSR/NBR at specified adjusted p-value thresholds ",
                      "can not be displayed. Check that cont_truth is not ",
                      "'none' and that s-values are provided."))
        )
      
      withProgress(message = "Updating plot...", value = 0, {
        if (length(values$all_methods) == 0 | length(input$cols) == 0 |
            (input$goButton == 0 & !isTRUE(autorun)))
          return(NULL)
        if ("curve" %in% input$plottype &
            !is_plottable(fsrnbrcurve(plotvalues()$all_vals)))
          return(NULL)
        if ("points" %in% input$plottype &
            !is_plottable(fsrnbr(plotvalues()$all_vals)))
          return(NULL)
        if (!any(c("curve", "points") %in% input$plottype))
          return(NULL)
        plot_fsrnbrcurve(cobraplot = plotvalues()$all_vals,
                         title = plotvalues()$title,
                         stripsize = input$stripsize, titlecol = "white",
                         pointsize = input$pointsize,
                         xaxisrange = input$xrange_fsrnbr,
                         plottype = input$plottype,
                         linewidth = 1)
      })
    })
    
    output$fsrnbrcurve_click_info <- DT::renderDataTable({
      if (length(values$all_methods) == 0 | length(input$cols) == 0 |
          (input$goButton == 0 & !isTRUE(autorun)))
        return(NULL)
      if ("curve" %in% input$plottype &
          !is_plottable(fsrnbrcurve(plotvalues()$all_vals)))
        return(NULL)
      if ("points" %in% input$plottype &
          !is_plottable(fsrnbr(plotvalues()$all_vals)))
        return(NULL)
      if ("curve" %in% input$plottype)
        tab_data <- isolate(fsrnbrcurve(plotvalues()$all_vals))
      else tab_data <- isolate(fsrnbr(plotvalues()$all_vals))
      if ("split" %in% input$facet_opt) {
        res <- nearPoints(tab_data, input$fsrnbrcurve_plot_click,
                          threshold = 5, maxpoints = 100,
                          addDist = TRUE, panelvar1 = "splitval",
                          xvar = "FSR", yvar = "NBR")
      } else {
        res <- nearPoints(tab_data, input$fsrnbrcurve_plot_click,
                          threshold = 5, maxpoints = 100,
                          addDist = TRUE, xvar = "FSR", yvar = "NBR")
      }
      methodcol <- "fullmethod"
      fix_res(res, methodcol = methodcol,
              aspcts = c("FSR", "Number of detections"), tabtype = "fsrnbr")
    })
    
    ## Close app
    output$close_app_ui <- shiny::renderUI({
      if (addStopButton) {
        shiny::actionButton("close_app", "Close app")
      } else {
        NULL
      }
    })
    shiny::observeEvent(input$close_app, {
      shiny::stopApp()
    })
    
  } ## end of server_function
  #nocov end
  
  shinyApp(ui = p_layout, server = server_function)
}
csoneson/iCOBRA documentation built on Dec. 31, 2024, 9:41 p.m.