R/helpers_general.R

Defines functions fix_res extend_resulttable select_measure check_agreement symdiff define_colors isinvalidpalette fixcolname calculate_adjp fix_duplicates get_coltype plot_theme get_keeplevels is_plottable get_keepfeatures res_check

Documented in calculate_adjp

## Function to perform some checks on the input (result) files.
## Return TRUE if everything seems ok,
## otherwise print a message and return FALSE.
res_check <- function(dfr) {
  if (ncol(dfr) == 1) {
    message("the data frame contains only one column")
    return(FALSE)
  }
  return(TRUE)
}

get_keepfeatures <- function(truth, df, method, colm, onlyshared) {
  if (!isTRUE(onlyshared)) {
    allg <- rownames(truth[which(!is.na(truth[, colm])), , drop = FALSE])
  } else {
    allg <- intersect(rownames(truth[which(!is.na(truth[, colm])), ,
                                     drop = FALSE]),
                      rownames(df)[which(!is.na(df[method]))])
  }
  allg
}

is_plottable <- function(obj) {
  if (is.null(obj))
    FALSE
  else if (is(obj, "data.frame") && nrow(obj) == 0)
    FALSE
  else if (length(obj) == 0)
    FALSE
  else
    TRUE
}

#' @import dplyr
#' @importFrom rlang .data
get_keeplevels <- function(truth, splv, binary_truth, maxsplit) {
  if (splv != "none") {
    if (!is.finite(maxsplit)) {
      keeplevels <- levels(as.factor(truth[[splv]]))
    } else {
      if (!is.null(binary_truth)) {
        nbrtrulydiff <-
          as.data.frame(truth %>% group_by(.data[[splv]]) %>%
                          summarise(nbrdiff = length(which(.data[[binary_truth]] == 1))),
                          # summarise_(nbrdiff = paste0("length(which(",
                          #                             binary_truth, "== 1))")),
                        stringsAsFactors = FALSE)
        tokeep <- nbrtrulydiff[nbrtrulydiff$nbrdiff > 0, splv]
        tbl <- table(truth[[splv]])
        tbl <- tbl[as.character(tokeep)]
      } else {
        tbl <- table(truth[[splv]])
      }
      tbl <- sort(tbl, decreasing = TRUE)
      keeplevels <- names(tbl)[seq_len(min(maxsplit, length(tbl)))]
    }
  } else {
    keeplevels <- "overall"
  }
  keeplevels
}

plot_theme <- function(stripsize, titlecol) {
  theme_grey() +
    theme(legend.position = "right",
          panel.background = element_rect(fill = "white", colour = "black"),
          panel.grid.minor.x = element_blank(),
          panel.grid.minor.y = element_blank(),
          strip.text = element_text(size = stripsize),
          strip.background = element_rect(fill = NA, colour = "black"),
          axis.text.x = element_text(angle = 90, vjust = 0.5,
                                     hjust = 1, size = 15),
          axis.text.y = element_text(size = 15),
          axis.title.x = element_text(size = 20),
          axis.title.y = element_text(size = 20),
          plot.title = element_text(colour = titlecol))
}

get_coltype <- function(col_name) {
  if (substr(col_name, nchar(col_name) - 1, 
             nchar(col_name)) == ":P") {
    coltype <- "pval"
  } else if (substr(col_name, nchar(col_name) - 4,
                    nchar(col_name)) == ":adjP") {
    coltype <- "padj"
  } else if (substr(col_name, nchar(col_name) - 1,
                    nchar(col_name)) == ":S") {
    coltype <- "sval"
  } else if (substr(col_name, nchar(col_name) - 5,
                    nchar(col_name)) == ":score") {
    coltype <- "score"
  } else {
    coltype <- NULL
  }
  coltype
}

fix_duplicates <- function(res_df, feature_id, method_name) {
  dp <-
    unique(as.character(res_df[, feature_id][duplicated(res_df[, feature_id])]))
  if (length(dp) > 0) {
    message("found duplicate gene name(s) for ", method_name)
    for (j in dp) {
      idx <- which(res_df[, feature_id] == j)
      kp <- which.min(res_df[idx, method_name])[1]
      if (is.na(kp)) kp <- 1
      rem <- idx[-kp]
      res_df <- res_df[-rem, , drop = FALSE]
    }
    if (sum(duplicated(res_df[, feature_id])) == 0)
      message("fixed the duplication")
  }
  res_df
}

#' Calculate adjusted p-values
#'
#' Calculate adjusted p-values for methods where only nominal p-values are
#' available in a \code{COBRAData} object.
#'
#' @param cobradata A \code{COBRAData} object.
#' @param method A character string giving the method (selected from
#'   \code{p.adjust.methods()}) that will be used to perform the adjustment.
#'
#' @return A \code{COBRAData} object, extended with the calculated adjusted
#'   p-values.
#'
#' @export
#' @author Charlotte Soneson
#' @examples
#' data(cobradata_example)
#' cobradata_example <- calculate_adjp(cobradata_example, method = "BH")
calculate_adjp <- function(cobradata, method = "BH") {
  sf <- setdiff(colnames(pval(cobradata)), colnames(padj(cobradata)))
  if (length(sf) > 0) {
      pa <- as.data.frame(apply(pval(cobradata)[, sf, drop = FALSE], 2,
                                stats::p.adjust, method = method))
      missing_genes <- setdiff(rownames(pa), rownames(padj(cobradata)))
      if (length(padj(cobradata)) != 0) {
        tmpadd <-
          as.data.frame(matrix(NA, length(missing_genes),
                               ncol(padj(cobradata)),
                               dimnames = list(missing_genes,
                                               colnames(padj(cobradata)))))
        padj(cobradata) <- rbind(padj(cobradata), tmpadd)
        padj(cobradata) <- cbind(padj(cobradata),
                                 pa[match(rownames(padj(cobradata)),
                                          rownames(pa)), , drop = FALSE])
      } else {
        padj(cobradata) <- pa
      }
  }
  cobradata
}

fixcolname <- function(df, prevv, newv) {
  idx <- which(colnames(df) == prevv)
  if (length(idx) > 0)
    colnames(df)[idx] <- newv
  df
}

isinvalidpalette <- function(palette) {
  bnm <- strsplit(palette, " \\(")[[1]][1]
  if (!(bnm %in% c("hue_pal", "rainbow", "heat", "terrain", "topo",
                   "cm", "Accent", "Dark2", "Paired", "Pastel1",
                   "Pastel2", "Set1", "Set2", "Set3")))
    TRUE
  else
    FALSE
}

#' @importFrom scales hue_pal brewer_pal
define_colors <- function(cobraperf, palette, facetted, incloverall, 
                          conditionalfill) {
  levs <- basemethod <- NULL

  basem <- basemethods(cobraperf)
  strl <- paste0("_", stratiflevels(cobraperf))
  inp_methods <- expand.grid(basemethod = basem, levs = c("", strl))
  inp_methods$fullmethod <- paste0(inp_methods$basemethod, inp_methods$levs)

  if (!isTRUE(incloverall))
    inp_methods <- subset(inp_methods, levs != "_overall")

  ## Calculate number of required colors
  if (isTRUE(facetted)) {
    tmp_methods <- unique(inp_methods$basemethod)
    ncolors <- length(unique(tmp_methods))
  } else {
    tmp_methods <- unique(subset(inp_methods, levs != "" &
                                   basemethod != "truth")$fullmethod)
    if ("truth" %in% inp_methods$basemethod)
      tmp_methods <- c(tmp_methods, "truth")
    ncolors <- length(tmp_methods)
  }
  tmp_methods <- as.character(tmp_methods)

  ## Define colors
  if (length(palette) > 1 || 
      (length(palette) == 1 && isinvalidpalette(palette))) {
    ## User-specified color vector
    
    ## First get the pre-defined colors right
    use_colors0 <- c()
    if (any(tmp_methods %in% names(palette))) {
      use_colors0 <- palette[intersect(tmp_methods, names(palette))]
      tmp_methods <- setdiff(tmp_methods, names(use_colors0))
      ncolors <- ncolors - length(use_colors0)
      palette <- palette[!(names(palette) %in% names(use_colors0))]
    }
    ## Then exclude any color assigned to irrelevant method
    excl <- which(names(palette) != "" & !(names(palette) %in% tmp_methods))
    if (length(excl) > 0) {
      palette <- palette[-excl]
    }
    
    if (length(palette) > ncolors) {
      warning("too many colors supplied, only a subset will be used")
      use_colors1 <- palette[seq_len(ncolors)]
    } else if (length(palette) < ncolors) {
      warning("too few colors provided, ", ncolors - length(palette),
              " random colors will be added")
      use_colors1 <- c(palette,
                       setdiff(sample(grDevices::colors(),
                                      length(grDevices::colors())),
                               c("white",
                                 palette))[seq_len(ncolors - length(palette))])
    } else {
      use_colors1 <- palette
    }
    names(use_colors1) <- tmp_methods
    use_colors1 <- c(use_colors0, use_colors1)
  } else {
    bnm <- strsplit(palette, " \\(")[[1]][1]
    ## Check that the palette is valid, otherwise consider it a color
    if (!(bnm %in% c("hue_pal", "rainbow", "heat", "terrain", "topo",
                     "cm", "Accent", "Dark2", "Paired", "Pastel1",
                     "Pastel2", "Set1", "Set2", "Set3"))) {
      warning("invalid palette, will consider it a color")
      use_colors1 <- c(palette,
                       setdiff(sample(grDevices::colors(),
                                      length(grDevices::colors())),
                               c("white",
                                 palette))[seq_len(ncolors - length(palette))])
    } else {
      ## Pre-defined palette
      maxnbr <- c(Accent = 8, Dark2 = 8, Paired = 12, Pastel1 = 9,
                  Pastel2 = 8, Set1 = 9, Set2 = 8, Set3 = 12)
      if (palette == "hue_pal") use_colors1 <- scales::hue_pal()(ncolors)
      else if (palette == "rainbow") use_colors1 <- grDevices::rainbow(ncolors)
      else if (palette == "heat") use_colors1 <- grDevices::heat.colors(ncolors)
      else if (palette == "terrain") use_colors1 <-
          grDevices::terrain.colors(ncolors)
      else if (palette == "topo") use_colors1 <- grDevices::topo.colors(ncolors)
      else if (palette == "cm") use_colors1 <- grDevices::cm.colors(ncolors)
      else {
        if (ncolors <= maxnbr[bnm])
          use_colors1 <- scales::brewer_pal(palette = bnm)(ncolors)
        else
          use_colors1 <- scales::hue_pal()(ncolors)
      }
    }
    names(use_colors1) <- tmp_methods
  }

  if (isTRUE(facetted)) {
    inp_methods$color <- use_colors1[match(inp_methods$basemethod,
                                           names(use_colors1))]
  } else {
    inp_methods$color <- use_colors1[match(inp_methods$fullmethod,
                                           names(use_colors1))]
    inp_methods$color[inp_methods$basemethod == "truth"] <-
      use_colors1["truth"]
    if ("_overall" %in% inp_methods$levs) {
      for (m in unique(inp_methods$basemethod)) {
        inp_methods$color[inp_methods$fullmethod == m] <-
          inp_methods$color[inp_methods$fullmethod == paste0(m, "_overall")]
      }
    }
  }

  use_colors1 <- inp_methods$color
  names(use_colors1) <- inp_methods$fullmethod

  ## Get colors for "FDR satisfied/not satisfied" (white or method color), if
  ## conditionalfill = TRUE. If not, points will always be white.
  if (conditionalfill) {
    use_colors2 <- c(use_colors1, rep("white", length(use_colors1)))
  } else {
    use_colors2 <- rep("white", 2 * length(use_colors1))
  }
  names(use_colors2) <- c(paste0(names(use_colors1), "yes"),
                          paste0(names(use_colors1), "no"))
  
  use_colors <- c(use_colors1, use_colors2)
  return(use_colors)
}

symdiff <- function(x, y) { 
  setdiff(union(x, y), intersect(x, y))
}

check_agreement <- function(x, y, method, expsgn) {
  x <- x[method]
  y <- y[method]
  ok <- length(symdiff(rownames(x[!is.na(x[[method]]), , drop = FALSE]), 
                       rownames(y[!is.na(y[[method]]), , drop = FALSE]))) == 0
  nm <- intersect(rownames(x), rownames(y))
  x <- x[match(nm, rownames(x)), method]
  y <- y[match(nm, rownames(y)), method]
  sgn <- sign(diff(x[order(y)]))
  ## Check that x and y are monotonically related, with the right sign
  all(sgn[sgn != 0 & !is.na(sgn)] == expsgn) && ok
}

select_measure <- function(cobradata, method, asp, prefer_pval) {
  cobradata <- update_cobradata(cobradata, quiet = TRUE)
  ret <- NULL
  if (asp %in% c("nbr", "fpr", "fdr", "tpr")) {
    if (method %in% names(padj(cobradata))) ret <- "padj"
    else ret <- NULL
  } else if (asp %in% c("fsrnbr")) {
    if (method %in% names(score(cobradata)) && 
        method %in% names(sval(cobradata))) ret <- "sval"
    else ret <- NULL
  } else if (asp %in% c("fdrtpr", "fdrnbr")) {
    if (method %in% names(pval(cobradata))) {
      if (method %in% names(padj(cobradata))) {
        ## Check that pval is monotonically increasing with increasing padj
        if (check_agreement(padj(cobradata), pval(cobradata), method, 1)) {
          ret <- "pval"
        } else if (method %in% names(score(cobradata))) {
          ## Check that score is monotonically increasing with decreasing padj
          if (check_agreement(padj(cobradata), score(cobradata), method, -1)) {
            ret <- "score"
          } else { 
            ret <- "padj"
          }
        } else { 
          ret <- "padj"
        }
      } else ret <- "pval"
    } else if (method %in% names(score(cobradata))) {
      if (method %in% names(padj(cobradata))) {
        ## Check that score is monotonically increasing with decreasing padj
        if (check_agreement(padj(cobradata), score(cobradata), method, -1)) {
          ret <- "score"
        } else ret <- "padj"
      } else ret <- "score"
    } else if (method %in% names(padj(cobradata))) {
      ret <- "padj"
    } else ret <- NULL
  } else if (asp %in% c("roc", "fpc")) {
    if (prefer_pval) {
      if (method %in% names(pval(cobradata))) ret <- "pval"
      else if (method %in% names(padj(cobradata))) ret <- "padj"
      else if (method %in% names(score(cobradata))) ret <- "score"
      else ret <- NULL
    } else {
      if (method %in% names(score(cobradata))) ret <- "score"
      else if (method %in% names(pval(cobradata))) ret <- "pval"
      else if (method %in% names(padj(cobradata))) ret <- "padj"
      else ret <- NULL
    }
  } else if (asp %in% c("corr", "scatter", "deviation")) {
    if (method %in% names(score(cobradata))) ret <- "score"
    else ret <- NULL
  }
  ret
}

#' @importFrom reshape2 melt
extend_resulttable <- function(df, splv, keeplevels, valuename,
                               basemethod, domelt = TRUE) {
  if (isTRUE(domelt)) {
    df <- reshape2::melt(df, varnames = c("thr", "method"),
                         value.name = valuename)
    df <- fixcolname(df, prevv = "value", newv = valuename)
  }
  df$basemethod <- basemethod[match(df$method, names(basemethod))]
  df$meas <- sapply(df$method, function(w) {
    a <- strsplit(as.character(w), "__")[[1]]
    paste0("__", a[length(a)])
  })
  df$method <- gsub("__sval$", "", gsub("__padj$", "", 
                                        gsub("__pval$", "",
                                             gsub("__score", "", df$method))))

  df$fullmethod <- df$method
  if (splv == "none") {
    df <- droplevels(df[grep("_overall$", df$method), ])
    df$splitval <- "overall"
    df$method <- sapply(as.character(df$fullmethod), function(w) {
      gsub("_overall$", "", w)
    })
  } else {
    df$splitval <-
      factor(sapply(as.character(df$fullmethod),
                    function(w) {
                      if (length(grep("overall$", w)) > 0) {
                        "overall"
                      } else {
                        a <- unlist(strsplit(w, paste0("_", splv, ":")))
                        paste0(splv, ":", a[2])
                      }
                    }), levels = c("overall", paste0(splv, ":", keeplevels)))

    df$method <-
      sapply(as.character(df$fullmethod),
             function(w) {
               if (length(grep("_overall$", w)) > 0) {
                 unlist(strsplit(w, "_overall$")[1])
               } else {
                 a <- unlist(strsplit(w, paste0("_", splv, ":")))
                 a[1]
               }
             })
  }
  df
}

#' @importFrom DT datatable
fix_res <- function(res, methodcol, aspcts, tabtype = "large") {
  res$dist_ <- round(res$dist_, 1)
  if (tabtype != "scatter") {
    if (!("thr" %in% colnames(res))) {
      um <- unique(res[, methodcol])
      res <- res[match(um, res[, methodcol]), ]
    }
  }
  idx <- match(c("thr", methodcol, "dist_", "NBR", "CUTOFF", "FPC_CUTOFF",
                 "ROC_CUTOFF", "topN", "OBSERVATION", "TRUTH", "POSSIGN", 
                 "NEGSIGN", "ZEROSIGN"), colnames(res))
  colnames(res)[idx[!is.na(idx)]] <-
    c("Threshold", "Method", "Distance from cursor", "Number of detections",
      "Cutoff", "Cutoff", "Cutoff", "Number of detections", "observation",
      "truth", "Number of pos sign", "Number of neg sign", 
      "Number of zero sign")[!is.na(idx)]

  if ("Threshold" %in% colnames(res)) {
    res$Threshold <- gsub("thr", "", res$Threshold)
  }
  res$Method_m <- paste0(res$Method, res$meas)
  if (tabtype == "large") {
    res[, c("TP", "FP", "FN", "TN", "TOT_CALLED", "DIFF", "NONDIFF")] <-
      round(res[, c("TP", "FP", "FN", "TN", "TOT_CALLED", "DIFF", "NONDIFF")])
    DT::datatable(res[, c(ifelse("Threshold" %in% colnames(res),
                                 "Threshold", "Cutoff"),
                          "Method_m", aspcts, "TP", "FP",
                          "FN", "TN", "TOT_CALLED", "DIFF", "NONDIFF",
                          "Distance from cursor")])
  } else if (tabtype == "fsrnbr") {
    DT::datatable(res[, c(ifelse("Threshold" %in% colnames(res),
                                 "Threshold", "Cutoff"),
                          "Method_m", aspcts, "TS", "FS", "TOT_CALLED", 
                          "Number of pos sign", 
                          "Number of neg sign", "Number of zero sign", 
                          "Distance from cursor")])
  } else if (tabtype == "corr") {
    DT::datatable(res[, c("Method_m", aspcts, "Distance from cursor")])
  } else if (tabtype == "scatter") {
    DT::datatable(res[, c("Method_m", "feature", aspcts,
                          "Distance from cursor")])
  } else if (tabtype == "deviation") {
    res[, "Horizontal distance from cursor"] <-
      res[, "Distance from cursor"]
    DT::datatable(res[, c("Method_m", "feature", aspcts,
                          "Horizontal distance from cursor")])
  } else {
    DT::datatable(res[, c("Method_m", aspcts, "Cutoff",
                          "Distance from cursor")])
  }
}
csoneson/iCOBRA documentation built on Dec. 31, 2024, 9:41 p.m.