R/goseq.R

Defines functions goseq

Documented in goseq

#############################################################################
#Description: Takes the PWF generated by nullp and uses it to generate p-values for categories specified incorporating representation bias
#Notes: The automatic data fetching routines rely on the appropriate organism packages being installed.
#Author: Matthew Young
#Date Modified: 17/12/2010

goseq=function(pwf,genome,id,gene2cat=NULL,test.cats=c("GO:CC","GO:BP","GO:MF"),method="Wallenius",repcnt=2000,use_genes_without_cat=FALSE){
	################# Input pre-processing and validation ###################
	#Do some validation of input variables
	if(any(!test.cats%in%c("GO:CC","GO:BP","GO:MF","KEGG"))){
		stop("Invalid category specified.  Valid categories are GO:CC, GO:BP, GO:MF or KEGG")
	}
	if((missing(genome) | missing(id))){
		if(is.null(gene2cat)){
			stop("You must specify the genome and gene ID format when automatically fetching gene to GO category mappings.")
		}
		#If we're using user specified mappings, this obviously isn't a problem
		genome='dummy'
		id='dummy'
	}
	if(!any(method%in%c("Wallenius","Sampling","Hypergeometric"))){
		stop("Invalid calculation method selected.  Valid options are Wallenius, Sampling & Hypergeometric.")
	}
	if(!is.null(gene2cat) && (!is.data.frame(gene2cat) & !is.list(gene2cat))){
		stop("Was expecting a dataframe or a list mapping categories to genes.  Check gene2cat input and try again.")
	}
		
	#Factors are evil
	pwf=unfactor(pwf)
	gene2cat=unfactor(gene2cat)

	###################### Data fetching and processing ########################
	if(is.null(gene2cat)){
		#When we fetch the data using getgo it will be in the list format
		message("Fetching GO annotations...")
		gene2cat=getgo(rownames(pwf),genome,id,fetch.cats=test.cats)
		names(gene2cat)=rownames(pwf)
		#Do the two rebuilds to remove any nulls
		cat2gene=reversemapping(gene2cat)
		gene2cat=reversemapping(cat2gene)
	}else{
		#The gene2cat input accepts a number of formats, we need to check each of them in term
		message("Using manually entered categories.")
		#The options are a flat mapping (that is a data frame or matrix) or a list, where the list can be either gene->categories or category->genes
		if(class(gene2cat)!="list"){
			#it's not a list so it must be a data.frame, work out which column contains the genes
			genecol_sum=as.numeric(apply(gene2cat,2,function(u){sum(u%in%rownames(pwf))}))
			genecol=which(genecol_sum!=0)
			if(length(genecol)>1){
				genecol=genecol[order(-genecol_sum)[1]]
				warning(paste("More than one possible gene column found in gene2cat, using the one headed",colnames(gene2cat)[genecol]))
			}
			if(length(genecol)==0){
				genecol=1
				warning(paste("Gene column could not be identified in gene2cat conclusively, using the one headed",colnames(gene2cat)[genecol]))
			}
			othercol=1
			if(genecol==1){othercol=2}
			#Now put it into our delicious listy format
			gene2cat=split(gene2cat[,othercol],gene2cat[,genecol])
			#Do the appropriate builds
			cat2gene=reversemapping(gene2cat)
			gene2cat=reversemapping(cat2gene)
		}
		#!!!!
		#The following conditional has been flagged as a potential issue when using certain 
		#types of input where the category names are the same as gene names (which seems like 
		#something you should avoid anyway...).  Leave it for now
		#!!!!
		#We're now garunteed to have a list (unless the user screwed up the input) but it could 
		#be category->genes rather than the gene->categories that we want. 
		if(sum(unique(unlist(gene2cat,use.names=FALSE))%in%rownames(pwf))>sum(unique(names(gene2cat))%in%rownames(pwf))){
			gene2cat=reversemapping(gene2cat)
		}
		#Alright, we're garunteed a list going in the direction we want now.  Throw out genes which we will not use
		gene2cat=gene2cat[names(gene2cat)%in%rownames(pwf)]

		#Rebuild because it's a fun thing to do
		cat2gene=reversemapping(gene2cat)
		gene2cat=reversemapping(cat2gene)

		## make sure we remove duplicate entries .. e.g. see 
		## http://permalink.gmane.org/gmane.science.biology.informatics.conductor/46876
		cat2gene=lapply(cat2gene,function(x){unique(x)})
		gene2cat=lapply(gene2cat,function(x){unique(x)})
	}

	nafrac=(sum(is.na(pwf$pwf))/nrow(pwf))*100
	if(nafrac>50){
		warning(paste("Missing length data for ",round(nafrac),"% of genes.  Accuarcy of GO test will be reduced.",sep=''))
	}
	#Give the genes with unknown length the weight used by the median gene (not the median weighting!)
	pwf$pwf[is.na(pwf$pwf)]=pwf$pwf[match(sort(pwf$bias.data[!is.na(pwf$bias.data)])[ceiling(sum(!is.na(pwf$bias.data))/2)],pwf$bias.data)]

	###################### Calculating the p-values ########################
	# Remove all the genes with unknown GOterms
	unknown_go_terms=nrow(pwf)-length(gene2cat)
	if((!use_genes_without_cat) && unknown_go_terms>0 ){
	   message(paste("For",unknown_go_terms,"genes, we could not find any categories. These genes will be excluded."))
	   message("To force their use, please run with use_genes_without_cat=TRUE (see documentation).")
	   message("This was the default behavior for version 1.15.1 and earlier.")
	   pwf=pwf[rownames(pwf) %in% names(gene2cat),]
	} 
	#A few variables are always useful so calculate them
	cats=names(cat2gene)
	DE=rownames(pwf)[pwf$DEgenes==1]
	num_de=length(DE)
	num_genes=nrow(pwf)
	pvals=data.frame(category=cats,over_represented_pvalue=NA,under_represented_pvalue=NA,stringsAsFactors=FALSE,numDEInCat=NA,numInCat=NA)
	if(method=="Sampling"){
		#We need to know the number of DE genes in each category, make this as a mask that we can use later...
		num_DE_mask=rep(0,length(cats))
		a=table(unlist(gene2cat[DE],FALSE,FALSE))
		num_DE_mask[match(names(a),cats)]=as.numeric(a)
		num_DE_mask=as.integer(num_DE_mask)
		#We have to ensure that genes not associated with a category are included in the simulation, to do this they need an empty entry in the gene2cat list
		gene2cat=gene2cat[rownames(pwf)]
		names(gene2cat)=rownames(pwf)
		message("Running the simulation...")
		#Now do the actual simulating
		lookup=matrix(0,nrow=repcnt,ncol=length(cats))
		for(i in 1:repcnt){
			#A more efficient way of doing weighted random sampling without replacment than the built in function
			#The order(runif...)[1:n] bit picks n genes at random, weighting them by the PWF
			#The table(as.character(unlist(...))) bit then counts the number of times this random set occured in each category
			a=table(as.character(unlist(gene2cat[order(runif(num_genes)^(1/pwf$pwf),decreasing=TRUE)[1:num_de]],FALSE,FALSE)))
			lookup[i,match(names(a),cats)]=a
			pp(repcnt)
		}
		message("Calculating the p-values...")
		#The only advantage of the loop is it uses less memory...
		#for(i in 1:length(cats)){
		#	pvals[i,2:3]=c((sum(lookup[,i]>=num_DE_mask[i])+1)/(repcnt+1),(sum(lookup[,i]<=num_DE_mask[i])+1)/(repcnt+1))
		#	pp(length(cats))
		#}
		pvals[,2]=(colSums(lookup>=outer(rep(1,repcnt),num_DE_mask))+1)/(repcnt+1)
		pvals[,3]=(colSums(lookup<=outer(rep(1,repcnt),num_DE_mask))+1)/(repcnt+1)
	}
	if(method=="Wallenius"){
		message("Calculating the p-values...")
		#All these things are just to make stuff run faster, mostly because comparison of integers is faster than string comparison
		degenesnum=which(pwf$DEgenes==1)
		#Turn all genes into a reference to the pwf object
		cat2genenum=relist(match(unlist(cat2gene),rownames(pwf)),cat2gene)
		#This value is used in every calculation, by storing it we need only calculate it once
		alpha=sum(pwf$pwf)
		#Each category will have a different weighting so needs its own test
		pvals[,2:3]=t(sapply(cat2genenum,function(u){
			#The number of DE genes in this category
			num_de_incat=sum(degenesnum%in%u)
			#The total number of genes in this category
			num_incat=length(u)
			#This is just a quick way of calculating weight=avg(PWF within category)/avg(PWF outside of category)
			avg_weight=mean(pwf$pwf[u])
			weight=(avg_weight*(num_genes-num_incat))/(alpha-num_incat*avg_weight)
			if(num_incat==num_genes){ weight=1 } #case for the root GO terms			
			#Now calculate the sum of the tails of the Wallenius distribution (the p-values)
			c(dWNCHypergeo(num_de_incat,num_incat,num_genes-num_incat,num_de,weight)
			+pWNCHypergeo(num_de_incat,num_incat,num_genes-num_incat,num_de,weight,lower.tail=FALSE),
			pWNCHypergeo(num_de_incat,num_incat,num_genes-num_incat,num_de,weight))
		}))
	}
	if(method=="Hypergeometric"){
		message("Calculating the p-values...")
		#All these things are just to make stuff run faster, mostly because comparison of integers is faster than string comparison
		degenesnum=which(pwf$DEgenes==1)
		#Turn all genes into a reference to the pwf object
		cat2genenum=relist(match(unlist(cat2gene),rownames(pwf)),cat2gene)
		#Simple hypergeometric test, one category at a time
		pvals[,2:3]=t(sapply(cat2genenum,function(u){
			#The number of DE genes in this category
			num_de_incat=sum(degenesnum%in%u)
			#The total number of genes in this category
			num_incat=length(u)
			#Calculate the sum of the tails of the hypergeometric distribution (the p-values)
			c(dhyper(num_de_incat,num_incat,num_genes-num_incat,num_de)+phyper(num_de_incat,num_incat,num_genes-num_incat,num_de,lower.tail=FALSE),phyper(num_de_incat,num_incat,num_genes-num_incat,num_de))
		}))
	}
   #Populate the count columns...
   degenesnum=which(pwf$DEgenes==1)
   cat2genenum=relist(match(unlist(cat2gene),rownames(pwf)),cat2gene)
   pvals[,4:5]=t(sapply(cat2genenum,function(u){
      c(sum(degenesnum%in%u),length(u))
   }))
   
   #Finally, sort by p-value
   pvals=pvals[order(pvals$over_represented_pvalue),]

   # Supplement the table with the GO term name and ontology group
   # but only if the enrichment categories are actually GO terms
   if(any(grep("^GO:",pvals$category))){
      GOnames=select(GO.db,keys=pvals$category,columns=c("TERM","ONTOLOGY"))[,2:3]
      colnames(GOnames)<-tolower(colnames(GOnames))
      pvals=cbind(pvals,GOnames)
   }

   # And return
   return(pvals)
}
csdaw/goseq2 documentation built on April 23, 2022, 12:37 a.m.