# Argument check function
checkArg_maVolPlot <- function(diffstats,
contrast,
title,
controlGroup,
selectedGenes,
fdrCutOff,
lfcCutOff,
controlLfcCutOff,
plotType){
assert_that(is_validDiffstats(diffstats))
assert_that(is_validContrast(contrast, diffstats))
assert_that(is.string(title))
assert_that(is_validControlGroup(controlGroup, diffstats))
assert_that(is.character(selectedGenes) | is.null(selectedGenes),
msg = str_c("'selectedGenes' should be character vector of ",
"Accessions or NULL"))
assert_that(all(selectedGenes%in%fData(diffstats$MSnSetObj)$Accessions),
msg = str_c("Some of the genes provided in 'selectedGenes' were ",
"not found in the data table"))
assert_that(is.number(fdrCutOff))
assert_that(is.number(lfcCutOff))
assert_that(is.number(controlLfcCutOff))
assert_that(is.string(plotType))
assert_that(plotType %in% c("MA", "Volcano"),
msg = "plotType should be 'MA' or 'Volcano'")
}
# significance test function
testSignficant <- function(dat, cutoffs) {
isSig <- dat$adj.P.Val <= cutoffs$FDR &
!is.na(dat$adj.P.Val) &
abs(dat$log2FC) >= cutoffs$LFC
if(any(str_detect(colnames(dat), "controlLogFoldChange"))){
isSig <- isSig & abs(dat$controlLogFoldChange) >= cutoffs$cLFC
}
return(isSig)
}
# MA or Volcano Plot
# For plotting we will assign the proteins to one of 3 groups:
# A - selected (user specified in `selectedGenes`) - highlighted blue
# B - significant - pass cutoffs - highligted red
# C - non-significant - fail cutoffs - small and grey
#' MA or Volcano Plot
#'
#' MA or Volcano plot of differential statistics results
#'
#' Genes determined as significant according to the Log Fold Change and False
#' Discovery Rate cutoffs are highlighted in red.
#'
#' A user specified selection of genes can be highlighted by passing a character
#' vector of Accessions to the \code{selectedGenes} argument. The contents of
#' this vector will be matched with the Accessions column of the
#' \code{diffstats} object to identify rows to highlight. These will be plotted
#' in blue and labeled with the contents of the \code{GeneSymbol} column. Note
#' that if the \code{GeneSymbol} for a selected gene is missing, no label will
#' be apparent.
#'
#' @param diffstats list; output of computeDiffStats function
#' @param contrast character; contrast of interest to plot differential
#' statistics results
#' @param title character: title for the plot
#' @param controlGroup character; control group such as IgG
#' @param selectedGenes character: a vector defining genes to plot
#' @param fdrCutOff numeric: False Discovery Rate (adj.P.Val) cut off
#' @param lfcCutOff numeric: Log Fold Change (log2FC) cutoff for
#' @param controlLfcCutOff numeric: only plot genes above controlLogFoldChange
#' cutoff
#' @param plotType character: which type of plot to generate: "MA" or "Volcano"
#' @return An object created by \code{ggplot}
#' @examples
#'
#' data(human_anno)
#' data(exp3_OHT_ESR1)
#' MSnSet_data <- convertToMSnset(exp3_OHT_ESR1$intensities_qPLEX1,
#' metadata=exp3_OHT_ESR1$metadata_qPLEX1,
#' indExpData=c(7:16),
#' Sequences=2,
#' Accessions=6)
#' MSnset_norm <- groupScaling(MSnSet_data, scalingFunction=median)
#' MSnset_Pnorm <- summarizeIntensities(MSnset_norm, sum, human_anno)
#' contrasts <- c(tam.24h_vs_vehicle = "tam.24h - vehicle")
#' diffstats <- computeDiffStats(MSnset_Pnorm, contrasts=contrasts)
#' maVolPlot(diffstats, contrast = contrasts, plotType="MA")
#' maVolPlot(diffstats, contrast = contrasts, plotType="Volcano")
#'
#' @import ggplot2
#' @importFrom Biobase fData
#' @importFrom dplyr arrange bind_rows case_when desc mutate pull
#' @importFrom magrittr %>%
#' @importFrom rlang sym
#' @importFrom tidyr replace_na
#'
#' @export maVolPlot
maVolPlot <- function(diffstats, contrast, title="", controlGroup = NULL,
selectedGenes=NULL, fdrCutOff=0.05,
lfcCutOff=1, controlLfcCutOff=1, plotType="MA") {
checkArg_maVolPlot(diffstats, contrast, title, controlGroup, selectedGenes,
fdrCutOff, lfcCutOff, controlLfcCutOff, plotType)
# get contrast results
results <- suppressMessages(
getContrastResults(diffstats = diffstats,
contrast = contrast,
controlGroup = controlGroup
))
# prepare plot data
cutOffs <- list(FDR = fdrCutOff, LFC = lfcCutOff, cLFC = controlLfcCutOff)
grpLevels <- c("Selected", "Significant", "Non-significant")
daResTab <- results %>%
mutate(group = case_when(
Accessions %in% selectedGenes ~ "Selected",
testSignficant(., cutOffs) ~ "Significant",
TRUE ~ "Non-significant")) %>%
mutate(group = factor(group, levels = grpLevels)) %>%
arrange(desc(group)) %>%
mutate(phredPval = -log10(adj.P.Val)) %>%
mutate(SymbolLab = ifelse(group == "Selected", GeneSymbol, ""))
# set axes for plot type
if (plotType == "MA") {
xFactor <- sym("AvgIntensity")
yFactor <- sym("log2FC")
xLab <- "average log2(Intensity)"
yLab <- "log2(Fold Change)"
}
if (plotType == "Volcano") {
xFactor <- sym("log2FC")
yFactor <- sym("phredPval")
xLab <- "log2(Fold Change)"
yLab <- "-log10(Adjusted P value)"
}
# an x nudge factor for the selected gene labels
xN <- diff(range(pull(daResTab, !!xFactor))) / 100
# definitions for scales
sFill <- c(Selected = "cyan",
Significant = "red",
`Non-significant` = "gray50")
sColr <- c(Selected = "black",
Significant = "black",
`Non-significant` = "gray50")
sSize <- c(Selected = 1.8, Significant = 1.5, `Non-significant` = 0.9)
sAlph <- c(Selected = 1, Significant = 1, `Non-significant` = 0.6)
# plot
ggplot(daResTab, aes(x = !!xFactor, y = !!yFactor)) +
geom_hline(yintercept = 0, color = "gray50", size = 0.5) +
geom_point(aes(colour = group,
size = group,
alpha = group,
fill = group),
shape = 21) +
geom_text(aes(label = SymbolLab), hjust = 0, size = 3.5, nudge_x = xN) +
scale_colour_manual(values = sColr) +
scale_size_manual(values = sSize, name = "") +
scale_alpha_manual(values = sAlph) +
scale_fill_manual(values = sFill, name = "") +
labs(x = xLab, y = yLab, title = title) +
theme_bw() +
theme(
text = element_text(size = 16),
plot.title = element_text(size = 14, hjust = 0.5)
) +
guides(
colour = "none", size = "legend", alpha = "none",
fill = guide_legend(override.aes = list(shape = 21))
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.