require("testthat")
## random number generator
##### Change RNGversion in the future. Change Description such that #####
##### Depends: R (>= 3.6.0) #####
suppressWarnings(RNGversion("3.5.0"))
RNGkind("L'Ecuyer-CMRG")
test_that("test_hierarchy: check input", {
expect_error(test_hierarchy(x = NULL, y = NULL, dendr = NULL, family = NULL),
"The response y is required to be a vector or a list of vectors if multiple data sets are present.")
expect_error(test_hierarchy(x = NULL, y = matrix(1:4, ncol = 2), dendr = NULL,
family = NULL),
"The elements of the list y are required to be numeric vectors or matrices with only one column. In the case of only one data set, it is enough that y is a numeric vector or matrix with only one column but it can as well be a list with one element.")
expect_error(test_hierarchy(x = NULL, y = list(matrix(1:4, ncol = 2),
matrix(1:4, ncol = 2)),
dendr = NULL, family = NULL),
"The elements of the list y are required to be numeric vectors or matrices with only one column.")
expect_error(test_hierarchy(x = NULL, y = 1:2, dendr = NULL,
family = NULL),
"The input x is required to be a matrix or a list of matrices if multiple data sets are present.")
expect_error(test_hierarchy(x = matrix(1:4, ncol = 2), y = 1:2, dendr = NULL,
family = NULL),
"The matrix x is required to have column names. If there is no natural naming convention, then one can set them to some integer, say, 1 to p.",
fixed = TRUE)
tt <- matrix(1:4, ncol = 2)
colnames(tt) <- c("a", "b")
expect_error(test_hierarchy(x = tt, y = 1:2, dendr = NULL,
family = NULL),
"The input dendr is required to be a list of dendrograms.")
# Please note that family = NULL results in taking the default value.
set.seed(88)
x <- matrix(rnorm(100), ncol = 2)
colnames(x) <- c("col1", "col2")
y <- 1:50
dendr <- cluster_var(x = x)
# expect_error(test_hierarchy(x = x, y = y, dendr = dendr, family = "alsdkk"),
# "'arg' should be one of \"gaussian\", \"binomial\"")
set.seed(124)
res.multisplit <- multisplit(x = x, y = y)
expected_result_1 <- data.frame(block = NA, p.value = NA,
significant.cluster = NA)
expected_result_1$significant.cluster <- list(NA)
attr(expected_result_1, "class") <- c("data.frame")
expected_result <- list(res.multisplit = res.multisplit,
res.hierarchy = expected_result_1)
attr(expected_result, "class") <- c("hierT", "list")
expect_equal({set.seed(124); test_hierarchy(x = x, y = y, dendr = dendr,
family = "gaussian")},
expected_result)
})
#### Check output with one data set ####
# This function calculates the p-value for each of the notes in the tree.
check_test_hierarchy <- function(x, y, clvar, res.multisplit, B, cluster_test){
CT_colnames <- lapply(X = cluster_test, function(x) paste(x, collapse = "_"))
res <- matrix(NA, ncol = length(cluster_test), nrow = B)
colnames(res) <- CT_colnames
RES <- rep(NA, length(cluster_test))
names(RES) <- CT_colnames
for (i in cluster_test) { # for each cluster
for (b in 1:B) { # for each split (multi-sample splitting)
# selected coefficients
sel.coef <- res.multisplit[[1]]$sel.coef[b, ][!is.na(res.multisplit[[1]]$sel.coef[b, ])]
# other half of the samples
ind <- res.multisplit[[1]]$out.sample[b, ]
# combined data set (clvar plus x)
clvar_x <- cbind(clvar, x[, sel.coef, drop = FALSE])[ind, ]
# intersection and set difference of selected coefficients and the given cluster
intersect_i <- intersect(sel.coef, i)
setdiff_i <- setdiff(sel.coef, i)
# columnnames for the model \hat{S}^{(b)} \setminus C
sel_i_clvar <- c(colnames(clvar), setdiff_i)
# browser()
# design matrix of the reduced model: variables of \hat{S}^{(b)} \setminus C & clvar
clvar_x_reduced <- clvar_x[, sel_i_clvar, drop = FALSE]
if (ncol(clvar_x_reduced) == 0) {
clvar_x_reduced <- rep(1, length(y[ind]))
}
res[b, paste(i, collapse = "_")] <-
if (length(intersect_i) == 0) { # Equation (2) on page 333 of Mandozzi and Buehlmann (2016)
1
} else {
# min(1, ... * |\hat{S}^{(b)}| / |\hat{S}^{(b)} \setminus C|) => Equation (2) & (3)
# on page 333 of Mandozzi and Buehlmann (2016)
min(1, anova(
# full model: variables of \hat{S}^{(b)} & clvar
lm(y[ind] ~ clvar_x),
# reduced model: variables of \hat{S}^{(b)} \setminus C & clvar
lm(y[ind] ~ clvar_x_reduced),
test = "F")$P[2] *
length(sel.coef) / length(intersect_i)
)
}
}
# Equation (4) on page 333 of Mandozzi and Buehlmann (2016)
RES[paste(i, collapse = "_")] <- adj_pval(res[, paste(i, collapse = "_")], B = B)
}
# hierarchical adjustment has to be done by hand (Equation below Equation (4))
return(RES)
}
adj_pval <- function(pvals, B) {
# define the sequence of gamma values
gamma_min <- 0.05
gamma_step <- 0.01
gamma_seq <- seq(gamma_min, 1, gamma_step)
# compute the empirical quantile vector
gamma_step <- vector("numeric", length = length(gamma_seq))
for (g in 1:length(gamma_seq)) {
gamma_step[g] <- min(1, quantile(pvals / gamma_seq[g], gamma_seq[g],
na.rm = TRUE))
}
# compute the adjusted p value
# Equation 4 on page 333 in Mandozzi and Buehlmann (2016)
return(min(1, (1 - log(gamma_min)) * min(gamma_step)))
}
### Example I ###
test_that("test_hierarchy: check output (Example I)", {
## simulate index
n <- 800
p <- 5
B <- 50
## simulate data
require(MASS)
set.seed(9229)
sim.geno <- mvrnorm(n = n, mu = rep(0, p),
Sigma = toeplitz(0.8^(seq(0, p - 1))))
colnames(sim.geno) <- paste0("rsid", 1:p)
set.seed(144)
data.dim <- dim(sim.geno)
ind.active <- c(4, 1) # sample(1:data.dim[2], 2)
beta <- rep(0, data.dim[2])
beta[ind.active] <- 2
y <- sim.geno %*% beta + rnorm(data.dim[1])
# cluster the data
dendr <- cluster_var(x = sim.geno)
# plot(dendr$res.tree[[1]])
# multisplit
set.seed(2)
res.multisplit <- multisplit(x = sim.geno, y = y, family = "gaussian", B = B)
# test hierarchy: Tippett
set.seed(2)
res.T <- test_hierarchy(x = sim.geno, y = y, dendr = dendr, family = "gaussian",
B = B)
# test hierarchy: Stouffer
set.seed(2)
res.S <- test_hierarchy(x = sim.geno, y = y, dendr = dendr, family = "gaussian",
B = B, agg.method = "Stouffer")
## Test
# This list encodes the tree structure
cluster_test <- list(c("rsid1", "rsid2", "rsid3", "rsid4", "rsid5"),
c("rsid1", "rsid2"),
c("rsid3", "rsid4", "rsid5"),
c("rsid3", "rsid4"),
"rsid1",
"rsid2",
"rsid3",
"rsid4",
"rsid5")
pvals_to_be <- check_test_hierarchy(x = sim.geno, y = y, clvar = NULL,
res.multisplit = res.multisplit,
B = B, cluster_test = cluster_test)
# Tippett
compare_with <- pvals_to_be
expected_result <- data.frame(block = c(NA, NA),
p.value = compare_with[c("rsid1", "rsid4")])
expected_result$significant.cluster <- list(c("rsid1"), c("rsid4"))
rownames(expected_result) <- NULL
attr(expected_result, "class") <- c("data.frame")
expect_equal(res.T$res.hierarchy$p.value[1], expected_result$p.value[1],
tol = 1e-120)
expect_equal(res.T$res.hierarchy$p.value[1], expected_result$p.value[1],
tol = 1e-90)
expect_equal(res.T$res.hierarchy$significant.cluster,
expected_result$significant.cluster)
# Stouffer
compare_with <- pvals_to_be
expected_result <- data.frame(block = c(NA, NA),
p.value = compare_with[c("rsid1", "rsid4")])
expected_result$significant.cluster <- list(c("rsid1"), c("rsid4"))
rownames(expected_result) <- NULL
attr(expected_result, "class") <- c("data.frame")
expect_equal(res.S$res.hierarchy$p.value[1], expected_result$p.value[1],
tol = 1e-120)
expect_equal(res.S$res.hierarchy$p.value[1], expected_result$p.value[1],
tol = 1e-90)
expect_equal(res.S$res.hierarchy$significant.cluster,
expected_result$significant.cluster)
})
### Example II ###
test_that("test_hierarchy: check output (Example II)", {
## simulate index
n <- 800
p <- 5
B <- 5
## simulate data
require(MASS)
set.seed(9229)
sim.geno <- mvrnorm(n = n, mu = rep(0, p), Sigma = toeplitz(0.8^(seq(0, p - 1))))
colnames(sim.geno) <- paste0("rsid", 1:p)
sim.clvar <- matrix(rnorm(n * 3), ncol = 3)
colnames(sim.clvar) <- paste0("clvar", 1:3)
set.seed(144)
data.dim <- dim(sim.geno) # first entry corresponds to rows and second to columns
ind.active <- c(4, 1) # sample(1:data.dim[2], 2)
beta <- rep(0, data.dim[2])
beta[ind.active] <- 2
y <- sim.geno %*% beta + sim.clvar %*% c(0.25, 0.5, 1) + rnorm(data.dim[1])
# cluster the data
dendr <- cluster_var(x = sim.geno)
# plot(dendr$res.tree[[1]])
# multisplit
set.seed(555)
res.multisplit <- multisplit(x = sim.geno, y = y, clvar = sim.clvar,
family = "gaussian", B = B)
# test hierarchy: Tippett
set.seed(555)
res.T <- test_hierarchy(x = sim.geno, y = y, clvar = sim.clvar,
dendr = dendr, family = "gaussian", B = B)
# test hierarchy: Stouffer
set.seed(555)
res.S <- test_hierarchy(x = sim.geno, y = y, clvar = sim.clvar,
dendr = dendr, family = "gaussian", B = B,
agg.method = "Stouffer")
## test
# This list encodes the tree structure
cluster_test <- list(c("rsid1", "rsid2", "rsid3", "rsid4", "rsid5"),
c("rsid1", "rsid2"),
c("rsid3", "rsid4", "rsid5"),
c("rsid3", "rsid4"),
"rsid1",
"rsid2",
"rsid3",
"rsid4",
"rsid5")
pvals_to_be <- check_test_hierarchy(x = sim.geno, y = y, clvar = sim.clvar,
res.multisplit = res.multisplit,
B = B, cluster_test = cluster_test)
# Tippett
compare_with <- pvals_to_be
expected_result <- data.frame(block = c(NA, NA),
p.value = compare_with[c("rsid1", "rsid4")])
expected_result$significant.cluster <- list(c("rsid1"), c("rsid4"))
rownames(expected_result) <- NULL
attr(expected_result, "class") <- c("data.frame")
expect_equal(res.T$res.hierarchy$p.value[1], expected_result$p.value[1],
tol = 1e-120)
expect_equal(res.T$res.hierarchy$p.value[1], expected_result$p.value[1],
tol = 1e-90)
expect_equal(res.T$res.hierarchy$significant.cluster,
expected_result$significant.cluster)
# Stouffer
compare_with <- pvals_to_be
expected_result <- data.frame(block = c(NA, NA),
p.value = compare_with[c("rsid1", "rsid4")])
expected_result$significant.cluster <- list(c("rsid1"), c("rsid4"))
rownames(expected_result) <- NULL
attr(expected_result, "class") <- c("data.frame")
expect_equal(res.S$res.hierarchy$p.value[1], expected_result$p.value[1],
tol = 1e-125)
expect_equal(res.S$res.hierarchy$p.value[1], expected_result$p.value[1],
tol = 1e-95)
expect_equal(res.S$res.hierarchy$significant.cluster,
expected_result$significant.cluster)
})
#### Check output with multiple data sets ####
# Function for generating the data
require(MASS)
gen_one <- function(n, p, seed1, ind.a, seed3, num_clvar = NULL,
coef_clvar = NULL) {
set.seed(seed1)
x <- mvrnorm(n = n, mu = rep(0, p), Sigma = toeplitz(0.8^(seq(0, p - 1))) )
colnames(x) <- paste0("rsid", 1:p)
if (!is.null(num_clvar)) {
clvar <- matrix(rnorm(n * 3), ncol = 3)
colnames(clvar) <- paste0("clvar", 1:3)
} else {
clvar <- NULL
}
data.dim <- dim(x) # first entry corresponds to rows and second to columns
ind.active <- ind.a # sample(1:data.dim[2], 2)
beta <- rep(0, data.dim[2])
beta[ind.active] <- 2
set.seed(seed3)
if (!is.null(num_clvar)) {
y <- x %*% beta + rnorm(data.dim[1]) + clvar %*% coef_clvar
} else {
y <- x %*% beta + rnorm(data.dim[1])
}
return(list(x = x, y = y, clvar = clvar))
}
### Example III ###
test_that("test_hierarchy: check output (Example III multiple data sets)", {
skip_on_bioc()
## simulate index
n <- 800
p <- 5
B <- 50
## simulate data
r1 <- gen_one(n = n, p = p, seed1 = 9229, ind.a = c(4, 1), seed3 = 8)
r2 <- gen_one(n = n, p = p, seed1 = 929, ind.a = c(4, 1), seed3 = 99)
r3 <- gen_one(n = n, p = p, seed1 = 99, ind.a = c(4, 1), seed3 = 100)
r4 <- gen_one(n = n, p = p, seed1 = 9, ind.a = c(4, 1), seed3 = 1111)
x <- list(r1$x, r2$x, r3$x, r4$x)
y <- list(r1$y, r2$y, r3$y, r4$y)
# clvar <- list(r1$clvar, r2$clvar, r3$clvar, r4$clvar)
# cluster the data
dendr <- cluster_var(x = x)
# plot(dendr$res.tree[[1]])
# multisplit
set.seed(744)
res.multisplit <- multisplit(x = x, y = y, family = "gaussian", B = B)
# test hierarchy: Tippett
set.seed(744)
res.T <- test_hierarchy(x = x, y = y, dendr = dendr,
family = "gaussian", B = B)
# test hierarchy: Stouffer
set.seed(744)
res.S <- test_hierarchy(x = x, y = y, dendr = dendr,
family = "gaussian", B = B,
agg.method = "Stouffer")
## Test
# This list encodes the tree structure
cluster_test <- list(c("rsid1", "rsid2", "rsid3", "rsid4", "rsid5"),
c("rsid1", "rsid2", "rsid3"),
c("rsid4", "rsid5"),
c("rsid1", "rsid2"),
"rsid1",
"rsid2",
"rsid3",
"rsid4",
"rsid5")
res1 <- check_test_hierarchy(x = x[[1]], y = y[[1]], clvar = NULL,
res.multisplit = res.multisplit[1],
B = B, cluster_test = cluster_test)
res2 <- check_test_hierarchy(x = x[[2]], y = y[[2]], clvar = NULL,
res.multisplit = res.multisplit[2],
B = B, cluster_test = cluster_test)
res3 <- check_test_hierarchy(x = x[[3]], y = y[[3]], clvar = NULL,
res.multisplit = res.multisplit[3],
B = B, cluster_test = cluster_test)
res4 <- check_test_hierarchy(x = x[[4]], y = y[[4]], clvar = NULL,
res.multisplit = res.multisplit[4],
B = B, cluster_test = cluster_test)
pvals_to_be <- rbind(res1, res2, res3, res4)
# Tippett
compare_with <- apply(X = pvals_to_be, MARGIN = 2,
FUN = function(x, len_y) {
max(1 - (1 - min(x))^(len_y), .Machine$double.neg.eps)
},
len_y = 4)
expected_result <- data.frame(block = c(NA, NA),
p.value = compare_with[c("rsid4", "rsid1")])
expected_result$significant.cluster <- list(c("rsid4"), c("rsid1"))
rownames(expected_result) <- NULL
attr(expected_result, "class") <- c("data.frame")
expect_equal(res.T$res.hierarchy$p.value, expected_result$p.value,
tol = 1e-145)
expect_equal(res.T$res.hierarchy$significant.cluster,
expected_result$significant.cluster)
# Stouffer
# c(0.5, 0.5, 0.5, 0.5)
stouffer_weights <- sqrt(c(800, 800, 800, 800) / sum(c(800, 800, 800, 800)))
compare_with <- apply(X = pvals_to_be, MARGIN = 2,
FUN = function(x, len_y, stouffer_weights) {
pnorm(sum(stouffer_weights * qnorm(x)))
},
len_y = 4, stouffer_weights = stouffer_weights)
expected_result <- data.frame(block = c(NA, NA),
p.value = compare_with[c("rsid4", "rsid1")])
expected_result$significant.cluster <- list(c("rsid4"), c("rsid1"))
rownames(expected_result) <- NULL
attr(expected_result, "class") <- c("data.frame")
expect_equal(res.S$res.hierarchy$p.value, expected_result$p.value,
tol = 1e-200)
expect_equal(res.S$res.hierarchy$significant.cluster,
expected_result$significant.cluster)
})
### Example IV unbalanced data sets ###
test_that("test_hierarchy: check output (Example IV multiple data sets)", {
skip_on_bioc()
## simulate index
p <- 5
B <- 50
## simulate data
require(MASS)
r1 <- gen_one(n = 800, p = p, seed1 = 9229, ind.a = c(4, 1), seed3 = 8)
r2 <- gen_one(n = 200, p = p, seed1 = 929, ind.a = c(4, 1), seed3 = 99)
r3 <- gen_one(n = 350, p = p, seed1 = 99, ind.a = c(4, 1), seed3 = 100)
r4 <- gen_one(n = 50, p = p, seed1 = 9, ind.a = c(4, 1), seed3 = 1111)
x <- list(r1$x, r2$x, r3$x, r4$x)
y <- list(r1$y, r2$y, r3$y, r4$y)
# clvar <- list(r1$clvar, r2$clvar, r3$clvar, r4$clvar)
# cluster the data
dendr <- cluster_var(x = x)
# plot(dendr$res.tree[[1]])
# multisplit
set.seed(6)
res.multisplit <- multisplit(x = x, y = y, family = "gaussian", B = B)
# test hierarchy: Tippett
set.seed(6)
res.T <- test_hierarchy(x = x, y = y, dendr = dendr,
family = "gaussian", B = B)
# test hierarchy: Stouffer
set.seed(6)
res.S <- test_hierarchy(x = x, y = y, dendr = dendr,
family = "gaussian", B = B,
agg.method = "Stouffer")
## Test
# This list encodes the tree structure
cluster_test <- list(c("rsid1", "rsid2", "rsid3", "rsid4", "rsid5"),
c("rsid1", "rsid2", "rsid3"),
c("rsid4", "rsid5"),
c("rsid1", "rsid2"),
"rsid1",
"rsid2",
"rsid3",
"rsid4",
"rsid5")
res1 <- check_test_hierarchy(x = x[[1]], y = y[[1]], clvar = NULL,
res.multisplit = res.multisplit[1],
B = B, cluster_test = cluster_test)
res2 <- check_test_hierarchy(x = x[[2]], y = y[[2]], clvar = NULL,
res.multisplit = res.multisplit[2],
B = B, cluster_test = cluster_test)
res3 <- check_test_hierarchy(x = x[[3]], y = y[[3]], clvar = NULL,
res.multisplit = res.multisplit[3],
B = B, cluster_test = cluster_test)
res4 <- check_test_hierarchy(x = x[[4]], y = y[[4]], clvar = NULL,
res.multisplit = res.multisplit[4],
B = B, cluster_test = cluster_test)
pvals_to_be <- rbind(res1, res2, res3, res4)
# Tippett
compare_with <- apply(X = pvals_to_be, MARGIN = 2,
FUN = function(x, len_y) {
max(1 - (1 - min(x))^(len_y), .Machine$double.neg.eps)
},
len_y = 4)
expected_result <- data.frame(block = c(NA, NA),
p.value = compare_with[c("rsid1", "rsid4")])
expected_result$significant.cluster <- list(c("rsid1"), c("rsid4"))
rownames(expected_result) <- NULL
expect_equal(res.T$res.hierarchy$p.value[1], expected_result$p.value[1],
tol = 1e-140)
expect_equal(res.T$res.hierarchy$p.value[2], expected_result$p.value[2],
tol = 1e-140)
expect_equal(res.T$res.hierarchy$significant.cluster,
expected_result$significant.cluster)
# Stouffer
stouffer_weights <- sqrt(c(800, 200, 350, 50) / sum(c(800, 200, 350, 50)))
compare_with <- apply(X = pvals_to_be, MARGIN = 2,
FUN = function(x, len_y, stouffer_weights) {
pnorm(sum(stouffer_weights * qnorm(x)))
},
len_y = 4, stouffer_weights = stouffer_weights)
expected_result <- data.frame(block = c(NA, NA),
p.value = compare_with[c("rsid1", "rsid4")])
expected_result$significant.cluster <- list(c("rsid1"), c("rsid4"))
rownames(expected_result) <- NULL
expect_equal(res.S$res.hierarchy$p.value[1], expected_result$p.value[1],
tol = 1e-220)
expect_equal(res.S$res.hierarchy$p.value[2], expected_result$p.value[2],
tol = 1e-190)
expect_equal(res.S$res.hierarchy$significant.cluster,
expected_result$significant.cluster)
})
### Example V with co-variables ###
###### The result of this test will change under RNGversion("3.6.0"). #####
###### TODO Adjust example calcualted by hand when switching to #####
###### RNGversion("3.6.0"). #####
test_that("test_hierarchy: check output (Example V multiple data sets)", {
skip_on_bioc()
## simulate index
p <- 5
B <- 50
## simulate data
require(MASS)
r1 <- gen_one(n = 800, p = p, seed1 = 9229, ind.a = c(4, 1), seed3 = 8,
num_clvar = 3, coef_clvar = c(0.5, 0.25, 1.25))
r2 <- gen_one(n = 200, p = p, seed1 = 929, ind.a = c(4, 1), seed3 = 99,
num_clvar = 3, coef_clvar = c(0.5, 0.25, 1.25))
r3 <- gen_one(n = 350, p = p, seed1 = 99, ind.a = c(4, 1), seed3 = 100,
num_clvar = 3, coef_clvar = c(0.5, 0.25, 1.25))
r4 <- gen_one(n = 50, p = p, seed1 = 9, ind.a = c(4, 1), seed3 = 1111,
num_clvar = 3, coef_clvar = c(0.5, 0.25, 1.25))
x <- list(r1$x, r2$x, r3$x, r4$x)
y <- list(r1$y, r2$y, r3$y, r4$y)
clvar <- list(r1$clvar, r2$clvar, r3$clvar, r4$clvar) # with co-variables
# cluster the data
dendr <- cluster_var(x = x)
# plot(dendr$res.tree[[1]])
# multisplit
set.seed(3)
res.multisplit <- multisplit(x = x, y = y, clvar = clvar, family = "gaussian",
B = B)
# test hierarchy: Tippett
set.seed(3)
res.T <- test_hierarchy(x = x, y = y, clvar = clvar,
dendr = dendr, family = "gaussian",
B = B)
# test hierarchy: Stouffer
set.seed(3)
res.S <- test_hierarchy(x = x, y = y, clvar = clvar,
dendr = dendr, family = "gaussian",
B = B, agg.method = "Stouffer")
## Test
# This list encodes the tree structure
cluster_test <- list(c("rsid1", "rsid2", "rsid3", "rsid4", "rsid5"),
c("rsid1", "rsid2"),
c("rsid3", "rsid4", "rsid5"),
c("rsid4", "rsid5"),
"rsid1",
"rsid2",
"rsid3",
"rsid4",
"rsid5")
res1 <- check_test_hierarchy(x = x[[1]], y = y[[1]], clvar = clvar[[1]],
res.multisplit = res.multisplit[1],
B = B, cluster_test = cluster_test)
res2 <- check_test_hierarchy(x = x[[2]], y = y[[2]], clvar = clvar[[2]],
res.multisplit = res.multisplit[2],
B = B, cluster_test = cluster_test)
res3 <- check_test_hierarchy(x = x[[3]], y = y[[3]], clvar = clvar[[3]],
res.multisplit = res.multisplit[3],
B = B, cluster_test = cluster_test)
res4 <- check_test_hierarchy(x = x[[4]], y = y[[4]], clvar = clvar[[4]],
res.multisplit = res.multisplit[4],
B = B, cluster_test = cluster_test)
pvals_to_be <- rbind(res1, res2, res3, res4)
# Tippett
compare_with <- apply(X = pvals_to_be, MARGIN = 2,
FUN = function(x, len_y) {
max(1 - (1 - min(x))^(len_y), .Machine$double.neg.eps)
},
len_y = 4)
expected_result <- data.frame(block = c(NA, NA),
p.value = compare_with[c("rsid1", "rsid4")])
expected_result$significant.cluster <- list(c("rsid1"), c("rsid4"))
rownames(expected_result) <- NULL
attr(expected_result, "class") <- c("data.frame")
expect_equal(res.T$res.hierarchy$p.value[1], expected_result$p.value[1],
tol = 1e-140)
expect_equal(res.T$res.hierarchy$p.value[2], expected_result$p.value[2],
tol = 1e-140)
expect_equal(res.T$res.hierarchy$significant.cluster,
expected_result$significant.cluster)
# Stouffer
stouffer_weights <- sqrt(c(800, 200, 350, 50) / sum(c(800, 200, 350, 50)))
compare_with <- apply(X = pvals_to_be, MARGIN = 2,
FUN = function(x, len_y, stouffer_weights) {
pnorm(sum(stouffer_weights * qnorm(x)))
},
len_y = 4, stouffer_weights = stouffer_weights)
expected_result <- data.frame(block = c(NA, NA),
p.value = compare_with[c("rsid1", "rsid4")])
expected_result$significant.cluster <- list(c("rsid1"), c("rsid4"))
rownames(expected_result) <- NULL
attr(expected_result, "class") <- c("data.frame")
expect_equal(res.S$res.hierarchy$p.value[1], expected_result$p.value[1],
tol = 1e-220)
expect_equal(res.S$res.hierarchy$p.value[2], expected_result$p.value[2],
tol = 1e-180)
expect_equal(res.S$res.hierarchy$significant.cluster,
expected_result$significant.cluster)
### Example VI, same data as in Example V but without clvar ###
# test hierarchy: no clvar but the response was created incl. clvar
# test_hierarchy: check output (Example VI multiple data sets)
# multisplit
set.seed(4)
res.multisplit <- multisplit(x = x, y = y, family = "gaussian",
B = B)
# test hierarchy: Tippett
set.seed(4)
res.T <- test_hierarchy(x = x, y = y, dendr = dendr,
family = "gaussian", B = B)
# test hierarchy: Stouffer
set.seed(4)
res.S <- test_hierarchy(x = x, y = y, dendr = dendr,
family = "gaussian", B = B,
agg.method = "Stouffer")
cluster_test <- list(c("rsid1", "rsid2", "rsid3", "rsid4", "rsid5"),
c("rsid1", "rsid2"),
c("rsid3", "rsid4", "rsid5"),
c("rsid4", "rsid5"),
"rsid1",
"rsid2",
"rsid3",
"rsid4",
"rsid5")
res1 <- check_test_hierarchy(x = x[[1]], y = y[[1]], clvar = NULL,
res.multisplit = res.multisplit[1],
B = B, cluster_test = cluster_test)
res2 <- check_test_hierarchy(x = x[[2]], y = y[[2]], clvar = NULL,
res.multisplit = res.multisplit[2],
B = B, cluster_test = cluster_test)
res3 <- check_test_hierarchy(x = x[[3]], y = y[[3]], clvar = NULL,
res.multisplit = res.multisplit[3],
B = B, cluster_test = cluster_test)
res4 <- check_test_hierarchy(x = x[[4]], y = y[[4]], clvar = NULL,
res.multisplit = res.multisplit[4],
B = B, cluster_test = cluster_test)
pvals_to_be <- rbind(res1, res2, res3, res4)
# Tippett
compare_with <- apply(X = pvals_to_be, MARGIN = 2,
FUN = function(x, len_y) {
max(1 - (1 - min(x))^(len_y), .Machine$double.neg.eps)
},
len_y = 4)
expected_result <- data.frame(block = c(NA, NA),
p.value = compare_with[c("rsid1", "rsid4")])
expected_result$significant.cluster <- list(c("rsid1"), c("rsid4"))
rownames(expected_result) <- NULL
expect_equal(res.T$res.hierarchy$p.value[1], expected_result$p.value[1],
tol = 1e-100)
expect_equal(res.T$res.hierarchy$p.value[2], expected_result$p.value[2],
tol = 1e-100)
expect_equal(res.T$res.hierarchy$significant.cluster,
expected_result$significant.cluster)
# Stouffer
stouffer_weights <- sqrt(c(800, 200, 350, 50) / sum(c(800, 200, 350, 50)))
compare_with <- apply(X = pvals_to_be, MARGIN = 2,
FUN = function(x, len_y, stouffer_weights) {
pnorm(sum(stouffer_weights * qnorm(x)))
},
len_y = 4, stouffer_weights = stouffer_weights)
expected_result <- data.frame(block = c(NA, NA),
p.value = compare_with[c("rsid3_rsid4_rsid5", "rsid1")])
expected_result$significant.cluster <- list(c("rsid3", "rsid4", "rsid5"), c("rsid1"))
rownames(expected_result) <- NULL
expect_equal(res.S$res.hierarchy$p.value[1], expected_result$p.value[1],
tol = 1e-112)
expect_equal(res.S$res.hierarchy$p.value[2], expected_result$p.value[2],
tol = 1e-100)
expect_equal(res.S$res.hierarchy$significant.cluster,
expected_result$significant.cluster)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.