# test PLSR
test_that('PLSR',{
# DatasetExperiment
D=iris_DatasetExperiment()
D$sample_meta$Species=as.numeric(D$sample_meta$Species)
# PLSR model
M=mean_centre(mode='both')+PLSR(factor_name='Species')
# train the model
M=model_train(M,D)
# apply the model
M=model_predict(M,D)
# check the first scores value
expect_equal(M[2]$scores$data[1,1],-2.692173222367)
})
test_that('plsr_prediction_plot chart',{
# DatasetExperiment
D=iris_DatasetExperiment()
D$sample_meta$Species=as.numeric(D$sample_meta$Species)
# PLSR model
M=mean_centre(mode='both')+PLSR(factor_name='Species')
# train the model
M=model_train(M,D)
# apply the model
M=model_predict(M,D)
# plot
C=plsr_prediction_plot()
gg=chart_plot(C,M[2])
g=ggplot_build(gg)
expect_true(is(gg,'ggplot'))
})
test_that('plsr_residual_hist chart',{
# DatasetExperiment
D=iris_DatasetExperiment()
D$sample_meta$Species=as.numeric(D$sample_meta$Species)
# PLSR model
M=mean_centre(mode='both')+PLSR(factor_name='Species')
# train the model
M=model_train(M,D)
# apply the model
M=model_predict(M,D)
# plot
C=plsr_residual_hist()
gg=chart_plot(C,M[2])
g=ggplot_build(gg)
expect_true(is(gg,'ggplot'))
})
test_that('plsr_residual_hist chart',{
# DatasetExperiment
D=iris_DatasetExperiment()
D$sample_meta$Species=as.numeric(D$sample_meta$Species)
# PLSR model
M=mean_centre(mode='both')+PLSR(factor_name='Species')
# train the model
M=model_train(M,D)
# apply the model
M=model_predict(M,D)
# plot
C=plsr_qq_plot()
gg=chart_plot(C,M[2])
g=ggplot_build(gg)
expect_true(is(gg,'ggplot'))
})
test_that('plsr_cook_dist',{
# DatasetExperiment
D=iris_DatasetExperiment()
D$sample_meta$Species=as.numeric(D$sample_meta$Species)
# PLSR model
M=mean_centre(mode='both')+PLSR(factor_name='Species')
# train the model
M=model_train(M,D)
# apply the model
M=model_predict(M,D)
# plot
C=plsr_cook_dist()
gg=chart_plot(C,M[2])
g=ggplot_build(gg)
expect_true(is(gg,'ggplot'))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.