context("test-glog_transformation")
test_that("Glog function returns expected output", {
data <- mv_imputation(df=testData$data, method="knn")
out <- glog_transformation (df=data, classes=testData$class,
qc_label="QC")
lambda <- as.integer(7865716)
testthat::expect_true(lambda == as.integer(attributes(out)$
processing_history$glog_transformation$lambda_opt))
optimised_lambda <- attributes(out)
optimised_lambda <-
optimised_lambda$processing_history$glog_transformation$lambda_opt
graph <- glog_plot_optimised_lambda(
df=data,
optimised_lambda=optimised_lambda,
classes=testData$class,
qc_label="QC")
expect_equal(graph$labels$x, "lambda")
expect_equal(graph$labels$y, "SSE")
attributes(out)$processing_history <- NULL
expect_equal (as.data.frame(out), testData$glog_transformation)
})
test_that("Glog function fails if qc_label is wrong or QC samples don't exist", {
out <- mv_imputation(df=testData$data, method="knn")
expect_error (glog_transformation (df=out, classes=testData$class,
qc_label="A"))
})
test_that("Scale factor is applied if optimisation fails", {
df <- iris
classes <- iris$Species
df <- df[,-5]
expect_output(glog_transformation(df,classes,qc_label='versicolor'),
regexp='Error!Lambda')
})
test_that("If feature variance is 0 replace it with small value", {
out <- mv_imputation(df=testData$data, method="knn")
out[3,] <- 3
expect_output(out <- glog_transformation (df=out, classes=testData$class,
qc_label="QC"), regexp='Error!Lambda')
out <- out[3,]
testthat::expect_true(all(out[1:3] == out[4:6]))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.