#' Beta diversity boxplot
#'
#' @param MAE A multi-assay experiment object
#' @param tax_level The taxon level used for organisms
#' @param input_beta_method bray, jaccard
#' @param input_select_beta_condition Which condition to group samples
#' @return A plotly object
#'
#' @examples
#' data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
#' toy_data <- readRDS(data_dir)
#' p <- diversity_beta_boxplot(toy_data,
#' tax_level = "genus",
#' input_beta_method = "bray",
#' input_select_beta_condition = "DISEASE"
#' )
#' p
#'
#' @rawNamespace import(ape, except = where)
#' @import dplyr
#' @import plotly
#' @import magrittr
#' @import reshape2
#' @import MultiAssayExperiment
#' @import GUniFrac
#' @export
diversity_beta_boxplot <- function(MAE,
tax_level,
input_beta_method,
input_select_beta_condition) {
# Extract data
microbe <- MAE[["MicrobeGenetics"]] # double bracket subsetting is easier
# host <- MAE[['HostGenetics']]
tax_table <- as.data.frame(rowData(microbe)) # organism x taxlev
sam_table <- as.data.frame(colData(microbe)) # sample x condition
counts_table <-
as.data.frame(assays(microbe))[, rownames(sam_table)] #organism x sample
# Sum counts by taxon level and return counts
counts_table %<>% # Sum counts by taxon level
upsample_counts(tax_table, tax_level)
# change tax table size
tax_table <- tax_table[, seq_len(which(colnames(tax_table) %in% tax_level))]
# generate beta diversity
if (input_beta_method %in% c("bray", "jaccard")) {
# Then use vegdist from vegan to generate a bray distance object:
dist.mat <- vegan::vegdist(t(counts_table), method = input_beta_method)
dist.mat <- as.matrix(dist.mat)
} else {
# unifrac
# factorize each column
tax_table[sapply(tax_table, is.character)] <- lapply(
tax_table[sapply(tax_table, is.character)],
as.factor
)
# create formula
frm <- as.formula(paste0("~", paste(colnames(tax_table),
collapse = "/")))
# create phylo object
tr <- as.phylo(frm, data = tax_table)
# add branch length
tr <- suppressWarnings(compute.brlen(tr))
# root phylo
tr <- suppressWarnings(root(tr, 1, resolve.root = TRUE))
# count table
ct_table <- as.data.frame(t(counts_table))
ct_table[sapply(ct_table, is.numeric)] <- lapply(
ct_table[sapply(ct_table, is.numeric)],
as.integer
)
unifracs <- suppressWarnings(GUniFrac(ct_table, tr)$unifracs)
dw <- unifracs[, , "d_1"] # Weighted UniFrac
du <- unifracs[, , "d_UW"] # Unweighted UniFrac
if (input_beta_method == "unweighted unifrac") {
dist.mat <- du
} else {
dist.mat <- dw
}
}
# change condition name
colnames(sam_table)[which(colnames(sam_table) ==
input_select_beta_condition)] <- "condition"
dist.within.a <- c()
dist.within.b <- c()
dist.between <- c()
for (i in seq_len(nrow(dist.mat))) {
for (j in seq_len(nrow(dist.mat))) {
if (sam_table$condition[i] ==
unique(sam_table$condition)[1] & sam_table$condition[j] ==
unique(sam_table$condition)[1]) {
dist.within.a <- c(dist.within.a, dist.mat[i, j])
} else if (sam_table$condition[i] ==
unique(sam_table$condition)[2] & sam_table$condition[j] ==
unique(sam_table$condition)[2]) {
dist.within.b <- c(dist.within.b, dist.mat[i, j])
} else {
dist.between <- c(dist.between, dist.mat[i, j])
}
}
}
y.axis <- list(title = paste(input_beta_method, "Distance", sep = " "))
p <- plot_ly(
y = ~dist.within.a, type = "box",
name = paste("Within", unique(sam_table$condition)[1])
) %>%
add_trace(
y = ~dist.within.b,
name = paste("Within", unique(sam_table$condition)[2])
) %>%
add_trace(
y = ~dist.between,
name = "Between 2 conditions"
) %>%
layout(yaxis = y.axis)
p$elementId <- NULL # To suppress a shiny warning
return(p)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.