##' For identified splice junctions from RNA-Seq, this function finds the junction types for each entry according to the given annotation.
##' Six types of junctions are classified. find more details in the tutorial.
##'
##' Go to https://genome.ucsc.edu/FAQ/FAQformat.html#format1 for more information about BED format.
##' @title Annotates the junctions in a bed file.
##' @param jun a GRange object for junctions, the output of function Bed2Range.
##' @param splicemax a known exon splice matrix from the annotation.
##' @param txdb a TxDb object.
##' @param ids a dataframe containing gene/transcript/protein id mapping information.
##' @param ... additional arguments
##' @return a data frame of type and source for each junction.
##' @author Xiaojing Wang
##' @importFrom IRanges IRanges subsetByOverlaps
##' @export
##' @examples
##'
##' bedfile <- system.file("extdata/beds", "junctions1.bed", package="customProDB")
##' jun <- Bed2Range(bedfile,skip=1,covfilter=5)
##' load(system.file("extdata/refseq", "splicemax.RData", package="customProDB"))
##' load(system.file("extdata/refseq", "ids.RData", package="customProDB"))
##' txdb <- AnnotationDbi::loadDb(system.file("extdata/refseq", "txdb.sqlite",
##' package="customProDB"))
##' junction_type <- JunctionType(jun, splicemax, txdb, ids)
##' table(junction_type$jun_type)
##'
JunctionType <- function(jun, splicemax, txdb, ids, ...)
{
old <- options(stringsAsFactors = FALSE)
on.exit(options(old), add = TRUE)
#jun <- read.table(bedfile, sep='\t', header=F, quote = "\"",
# stringsAsFactors = F, skip=skip)
#jun5 <- subset(jun, V5 > covfilter)
#part1_len <- as.numeric(as.data.frame(strsplit(jun5$V11, ','))[1, ])
#part2_len <- as.numeric(as.data.frame(strsplit(jun5$V11, ','))[2, ])
#gap_len <- as.numeric(as.data.frame(strsplit(jun5$V12, ','))[2, ])
#part1_sta <- as.numeric(jun5$V2) + 1
#part1_end <- part1_sta + part1_len - 1
#part2_sta <- part1_sta + gap_len
#part2_end <- as.numeric(jun5$V3)
#junction <- as.data.frame(jun)
#colnames(junction) <- c('chr', 'start', 'end', 'width', 'strand', 'id', 'cov')
#junction <- data.frame(chr=jun5$V1, id=jun5$V4,
# start=jun5$V2, end=jun5$V3, cov=jun5$V5,
# strand=jun5$V6, part1_len, part2_len, part1_sta,
# part1_end, part2_sta, part2_end)
#if('chrM' %in% junction$chr){
# junction <- junction[-which(junction$chr == 'chrM'), ]
#}
#if('MT' %in% junction$chr){
# junction <- junction[-which(junction$chr == 'MT'), ]
#}
junRange1 <- GRanges(seqnames=seqnames(jun),
ranges=IRanges(start=values(jun)[['part1_sta']], end=values(jun)[['part1_end']]),
strand=strand(jun), junction_id=values(jun)[['id']])
junRange2 <- GRanges(seqnames=seqnames(jun),
ranges=IRanges(start=values(jun)[['part2_sta']], end=values(jun)[['part2_end']]),
strand=strand(jun), junction_id=values(jun)[['id']])
## map to exon
splice <- paste(splicemax[, 1], splicemax[, 2], sep='-')
exons <- exons(txdb)
jun_type <- rep("connect two non-exon region", length=length(junRange1))
part1_type <- rep("non-exon region", length=length(junRange1))
part2_type <- rep("non-exon region", length=length(junRange2))
part1_exon <- rep(NA, length=length(junRange1))
part2_exon <- rep(NA, length=length(junRange2))
match1_any <- findOverlaps(junRange1, exons)
match2_any <- findOverlaps(junRange2, exons)
part1_type[queryHits(match1_any)] <- "overlap with known exon"
part2_type[queryHits(match2_any)] <- "overlap with known exon"
part1_exon[queryHits(match1_any)] <-
values(exons)["exon_id"][subjectHits(match1_any), ]
part2_exon[queryHits(match2_any)] <-
values(exons)["exon_id"][subjectHits(match2_any), ]
match1 <- findOverlaps(junRange1, exons, type='end')
match2 <- findOverlaps(junRange2, exons, type='start')
part1_type[queryHits(match1)] <- "known exon (same end)"
part2_type[queryHits(match2)] <- "known exon (same start)"
part1_exon[queryHits(match1)] <- values(exons)["exon_id"][subjectHits(match1), ]
part2_exon[queryHits(match2)] <- values(exons)["exon_id"][subjectHits(match2), ]
########################junction type
# the order below matters
##################################
jun_type[intersect(unique(queryHits(match1_any)),
unique(queryHits(match2_any)))] <-
'connect two regions overlaped with known exons'
jun_type[intersect(unique(queryHits(match1)),
unique(queryHits(match2)))] <- 'connect two known exon'
jun_type[intersect(setdiff(unique(queryHits(match1)),
unique(queryHits(match2))),unique(queryHits(match2_any)))] <-
'connect a known exon and a region overlap with known exon'
jun_type[intersect(setdiff(unique(queryHits(match2)),
unique(queryHits(match1))),unique(queryHits(match1_any)))] <-
'connect a known exon and a region overlap with known exon'
jun_type[setdiff(unique(queryHits(match1_any)),
unique(queryHits(match2_any)))] <-
'connect a region overlap with known exon and a non-exon region'
jun_type[setdiff(unique(queryHits(match2_any)),
unique(queryHits(match1_any)))] <-
'connect a region overlap with known exon and a non-exon region'
jun_type[intersect(setdiff(unique(queryHits(match1)), unique(queryHits(match2))),
setdiff(1:length(junRange2),unique(queryHits(match2_any))))] <-
'connect a known exon and a non-exon region'
jun_type[intersect(setdiff(unique(queryHits(match2)), unique(queryHits(match1))),
setdiff(1:length(junRange1),unique(queryHits(match1_any))))] <-
'connect a known exon and a non-exon region'
#######################find transcript
trans <- transcripts(txdb)
tx_part1 <- .map2trans(junRange1, trans,ids)
colnames(tx_part1) <- c("tx_id_part1", "tx_name_part1", "ge_name_part1")
tx_part2 <- .map2trans(junRange2 ,trans,ids)
colnames(tx_part2) <- c("tx_id_part2", "tx_name_part2", "ge_name_part2")
########################junction type for 'connect two known exon'
matchid <- merge(as.matrix(match1), as.matrix(match2), by='queryHits',
all=T)
index_NA <- which(apply(matchid, 1, function(x) any(is.na(x))) == TRUE)
if(length(index_NA) >= 0) matchid_new <- matchid[-index_NA, ]
match1_exon <- values(exons[matchid_new$subjectHits.x, ])['exon_id'][, 1]
match2_exon <- values(exons[matchid_new$subjectHits.y, ])['exon_id'][, 1]
matchexon <- cbind(matchid_new, match1_exon, match2_exon)
exonmatrix <- paste(matchexon[, 4], matchexon[, 5], sep='-')
index_know <- which(exonmatrix %in% splice)
index_unknown <- which(!exonmatrix %in% splice)
jun_type[matchid_new[index_unknown, 'queryHits']] <-
'novel alternative splicing junction'
jun_type[matchid_new[index_know, 'queryHits']] <- 'known junction'
index_diff_ge <- which(mapply(function(x, y)
length(intersect(strsplit(x, '\\,'),
strsplit(y, '\\,'))),
tx_part1[, "ge_name_part1"], tx_part2[, "ge_name_part2"]) == 0)
index_fu <- intersect(matchid_new[index_unknown, 'queryHits'],index_diff_ge)
if(length(index_fu) > 0) jun_type[index_fu] <- 'gene fusion'
junction_type <- cbind(as.data.frame(jun), part1_type,
part2_type, part1_exon, part2_exon, jun_type, tx_part1, tx_part2)
}
.map2trans <- function(junRan, txs,ids)
{
tx_id_part <- rep(NA, length=length(junRan))
tx_name_part <- rep(NA, length=length(junRan))
ge_name_part <- rep(NA, length=length(junRan))
match_tx <- findOverlaps(junRan, txs)
tx_id_match <- values(txs)["tx_id"][subjectHits(match_tx), ]
tx_name_match <- values(txs)["tx_name"][subjectHits(match_tx), ]
gene_match <- ids[match(tx_name_match,ids$tx_name),'gene_name']
tx_part <- cbind(as.data.frame(match_tx), tx_id_match, tx_name_match,
gene_match)
ttt <- split(tx_part, tx_part$queryHits)
tx_id_combine <- unlist(lapply(ttt, function(x)
paste(x$tx_id_match, collapse=",")))
tx_name_combine <- unlist(lapply(ttt, function(x)
paste(x$tx_name_match, collapse=",")))
ge_name_combine <- unlist(lapply(ttt, function(x)
paste(x$gene_match, collapse=",")))
tx_id_part[as.numeric(names(ttt))] <- tx_id_combine
tx_name_part[as.numeric(names(ttt))] <- tx_name_combine
ge_name_part[as.numeric(names(ttt))] <- ge_name_combine
cbind(tx_id_part, tx_name_part,ge_name_part)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.