R/rc.feature.normalize.qc.R

Defines functions rc.feature.normalize.qc

Documented in rc.feature.normalize.qc

#' rc.feature.normalize.qc
#'
#' extractor for xcms objects in preparation for clustering
#'
#' @param ramclustObj ramclustObj containing MSdata with optional MSMSdata (MSe, DIA, idMSMS)
#' @param batch integer vector with length equal to number of injections in xset or csv file
#' @param order integer vector with length equal to number of injections in xset or csv file
#' @param p.cut numeric when run order correction is applied, only features showing a run order vs signal with a linear p-value (after FDR correction) < p.cut will be adjusted.  also requires r-squared < rsq.cut.
#' @param rsq.cut numeric when run order correction is applied, only features showing a run order vs signal with a linear r-squared > rsq.cut will be adjusted. also requires p values < p.cut.
#' @param qc.tag character vector of length one or two.  If length is two, enter search string and factor name in $phenoData slot (i.e. c("QC", "sample.type"). If length one (i.e. "QC"), will search for this string in the 'sample.names' slot by default.
#' @param p.adjust which p-value adjustment should be used? default = "none", see ?p.adjust
#' @param output.plot logical: if TRUE (default), plots are output to PDF.
#' @details This function offers normalization by run order, batch number, and QC sample signal intensity.
#' @details Each input vector should be the same length, and equal to the number of samples in the $MSdata set.
#' @details Input vector order is assumed to be the same as the sample order in the $MSdata set.
#' @return  ramclustR object with normalized data.
#'
#' @references Broeckling CD, Afsar FA, Neumann S, Ben-Hur A, Prenni JE. RAMClust: a novel feature clustering method enables spectral-matching-based annotation for metabolomics data. Anal Chem. 2014 Jul 15;86(14):6812-7. doi: 10.1021/ac501530d.  Epub 2014 Jun 26. PubMed PMID: 24927477.
#' @concept ramclustR
#' @concept RAMClustR
#' @concept metabolomics
#' @concept mass spectrometry
#' @concept clustering
#' @concept feature
#' @concept MSFinder
#' @concept xcms
#' @author Corey Broeckling
#' @export

rc.feature.normalize.qc <- function(ramclustObj = NULL,
                                    order = NULL,
                                    batch = NULL,
                                    qc.tag = NULL,
                                    output.plot = FALSE,
                                    p.cut = 0.05,
                                    rsq.cut = 0.1,
                                    p.adjust = "none") {
  ## CHECKS
  if (is.null(ramclustObj)) {
    stop(
      "existing ramclustObj required as input", "\n",
      "       see rc.get.xcms.data function for one approach to do so", "\n"
    )
  }
  
  if (is.null(order)) {
    warning(
      "order = NULL; run order correction can not be applied.", "\n",
      "       only batch effect will be corrected.", "\n"
    )
    do.order <- FALSE
  } else {
    if (!is.numeric(order)) {
      stop("order must be numeric.", "\n")
    }
    do.order <- TRUE
  }
  
  if (is.null(batch)) {
    warning("batch = NULL; data will be treated as single batch experiment", "\n")
    batch <- rep(1, nrow(ramclustObj$MSdata))
  }
  
  if (is.null(qc.tag)) {
    warning(
      "qc.tag = NULL; QC based run order correction can not be applied.", "\n",
      "       An assumption of random run order is required for this to be a valid approach.", "\n"
    )
    qc <- rep(TRUE, nrow(ramclustObj$MSdata))
  }
  
  
  params <- c(
    "qc.tag" = qc.tag,
    "p.cut" = p.cut,
    "rsq.cut" = rsq.cut
  )
  
  ## define QC samples in each set
  if(!is.null(qc.tag)) {
    # qc <- grepl(qc.tag[1], ramclustObj$phenoData[,2])
    qc <- define_samples(ramclustObj = ramclustObj, tag = qc.tag, return.logical = TRUE)
  }
  
  if (!is.logical(qc)) {
    stop("qc must be a logical vector", "\n")
  }
  
  if(length(which(qc)) == 0) {
    stop(" -- no qc samples recognized", '\n')
  }
  
  if (!all.equal(length(batch), length(qc), length(order), nrow(ramclustObj$MSdata))) {
    stop(
      "all lengths must be identical and are not: ", "\n",
      "  length(batch) = ", length(batch), "\n",
      "  length(order) = ", length(order), "\n",
      "  length(qc) = ", length(qc), "\n",
      "  number of injections = ", nrow(data1), "\n"
    )
  }
  
  data1 <- ramclustObj$MSdata
  data1.orig <- data1
  
  mslev <- 1
  if (!is.null(ramclustObj$MSMSdata)) {
    data2 <- ramclustObj$MSMSdata
    data2.org <- data2
    mslev <- 2
  }
  
  ord.corrected <- rep(FALSE, ncol(data1))
  
  data1.median <- apply(data1, 2, "median", na.rm = TRUE)
  data1.min <- apply(data1, 2, "min", na.rm = TRUE)
  
  data1.qc <- data1[which(qc), ]
  data1.qc.median <- apply(data1.qc, 2, "median", na.rm = TRUE)
  rm(data1.qc)
  nar <- which(is.na(data1.qc.median))
  if (length(nar) > 0) {
    data1.qc.median[nar] <- data1.min[nar]
  }
  
  if (mslev == 2) {
    data2.median <- apply(data2, 2, "median", na.rm = TRUE)
    data2.min <- apply(data2, 2, "min", na.rm = TRUE)
    
    data1.qc <- data1[which(qc), ]
    data1.qc.median <- apply(data1.qc, 2, "median", na.rm = TRUE)
    rm(data1.qc)
    nar <- which(is.na(data1.qc.median))
    if (length(nar) > 0) {
      data1.qc.median[nar] <- data1.min[nar]
    }
    data2.qc <- data2[which(qc), ]
    data2.qc.median <- apply(data2.qc, 2, "median", na.rm = TRUE)
    rm(data2.qc)
    nar <- which(is.na(data2.qc.median))
    if (length(nar) > 0) {
      data2.qc.median[nar] <- data2.min[nar]
    }
  }
  
  batches <- unique(batch)
  
  ##
  for (i in unique(batch)) {
    ## identify which samples are from batch i
    use <- which((batch == i))
    
    ## identify which are qc samples and from batch i
    use.qc <- which(qc & (batch == i))
    
    ## subset
    data1.batch <- data1[use, ]
    data1.qc.batch <- data1[use.qc, ]
    
    ## calculate batch median value for qc samples.
    data1.qc.batch.median <- apply(data1.qc.batch, 2, "median", na.rm = TRUE)
    
    ## if any are NA values, replace with global qc median
    nar <- which(is.na(data1.qc.batch.median))
    if (length(nar) > 0) {
      data1.qc.batch.median[nar] <- data1.qc.median[nar]
    }
    
    ## calculate global:batch QC fold change and apply correction
    ## this will bring the median signal intensity to similar scales
    ## across batches.
    data1.qc.batch.fc <- data1.qc.batch.median / data1.qc.median
    ## assume all fc values > 1000 are artifacts
    odd <- which(data1.qc.batch.fc > 100 | data1.qc.batch.fc < 1 / 100)
    data1.qc.batch.fc[odd] <- 1
    cols <- rep(1, length(data1.qc.batch.fc))
    cols[odd] <- 2
    # plot(log10(data1.qc.batch.median), log10(data1.qc.median), main = i, col = cols, pch = 19)
    # Sys.sleep(3)
    
    
    for(x in 1:length(use)) {
      data1[use[x], ] <- data1.batch[x,] / data1.qc.batch.fc
    }
    
    if (do.order) {   
      corrected <- vector(mode = "numeric")
      x <- order[use.qc]
      for(j in 1:ncol(data1)) {
        y <- data1[use.qc, j, drop = FALSE]
        mod <- lm(y ~ x)
        rsq <- summary(mod)$r.squared
        mod.anova <- anova(mod)
        pval <- mod.anova$`Pr(>F)`[1]
        
        if(is.na(rsq)) {
          rsq <- 0
          pval <- 1
        }
        
        if(rsq >= rsq.cut & pval <= p.cut) {
          cat(rsq)
          cat(pval)
          corrected <- c(corrected, j)
          p <- predict(
            object = lm(y ~ x),
            newdata = data.frame(x = use)
          )
          new.data <- data1[use, j, drop = FALSE] + data1[use, j, drop = FALSE]/p
          data1[use, j] <- new.data
        }
        
      }
    }
    data1[which(data1 < 0, arr.ind = TRUE)] <- 0
  }
  ramclustObj$MSdata <- data1
  
  if (!is.null(ramclustObj$MSMSdata)) {
    for (i in unique(batch)) {
      ## identify which samples are from batch i
      use <- which((batch == i))
      
      ## identify which are qc samples and from batch i
      use.qc <- which(qc & (batch == i))
      
      ## subset
      data2.batch <- data2[use, ]
      data2.qc.batch <- data2[use.qc, ]
      
      ## calculate batch median value for qc samples.
      data2.qc.batch.median <- apply(data2.qc.batch, 2, "median", na.rm = TRUE)
      
      ## if any are NA values, replace with global qc median
      nar <- which(is.na(data2.qc.batch.median))
      if (length(nar) > 0) {
        data2.qc.batch.median[nar] <- data2.qc.median[nar]
      }
      
      ## calculate global:batch QC fold change and apply correction
      ## this will bring the median signal intensity to similar scales
      ## across batches.
      data2.qc.batch.fc <- data2.qc.batch.median / data2.qc.median
      ## assume all fc values > 1000 are artifacts
      odd <- which(data2.qc.batch.fc > 100 | data2.qc.batch.fc < 1 / 100)
      data2.qc.batch.fc[odd] <- 1
      cols <- rep(1, length(data2.qc.batch.fc))
      cols[odd] <- 2
      # plot(log10(data2.qc.batch.median), log10(data2.qc.median), main = i, col = cols, pch = 19)
      # Sys.sleep(3)
      
      
      for(x in 1:length(use)) {
        data2[use[x], ] <- data2.batch[x,] / data2.qc.batch.fc
      }
      
      if (do.order) {   
        corrected <- vector(mode = "numeric")
        x <- order[use.qc]
        for(j in 1:ncol(data2)) {
          y <- data2[use.qc, j, drop = FALSE]
          mod <- lm(y ~ x)
          rsq <- summary(mod)$r.squared
          mod.anova <- anova(mod)
          pval <- mod.anova$`Pr(>F)`[1]
          
          if(is.na(rsq)) {
            rsq <- 0
            pval <- 1
          }
          
          if(rsq >= rsq.cut & pval <= p.cut) {
            corrected <- c(corrected, j)
            p <- predict(
              object = lm(y ~ x),
              newdata = data.frame(x = use)
            )
            new.data <- data2[use, j, drop = FALSE] + data2[use, j, drop = FALSE]/p
            data2[use, j] <- new.data
          }
          
        }
      }
      data2[which(data2 < 0, arr.ind = TRUE)] <- 0
    }
    ramclustObj$MSMSdata <- data2
  }
  
  corrected <- unique(corrected)
  qc.corrected <- rep(FALSE, length(ramclustObj$fmz))
  qc.corrected[corrected] <- TRUE
  
  ramclustObj$history$normalize.batch.qc <- paste0(
    "Features were normalized ",
    if (!is.null(ramclustObj$history$normalize.tic)) {
      "additionally "
    },
    "by linearly regressing run order versus qc feature intensities to account for instrument signal intensity drift.",
    " Only features with a regression pvalue less than ", p.cut,
    " and an r-squared greater than ", rsq.cut, " were corrected.",
    "  Of ", length(qc.corrected), " features, ", length(corrected),
    if (length(corrected) > 1) {
      " were corrected"
    } else {
      " was corrected"
    },
    " for run order effects",
    if (length(batches) > 1) {
      " in at least one batch.  Batch effects were normalized to median intensity for each feature."
    } else {
      "."
    }
  )
  
  
  if (is.null(ramclustObj$params)) {
    ramclustObj$params <- list()
  }
  ramclustObj$params$rc.feature.normalize.qc <- params
  
  cat(ramclustObj$history$normalize.batch.qc)
  
  return(ramclustObj)
}
cbroeckl/RAMClustR documentation built on Sept. 1, 2024, 1:50 a.m.