filterEGenes = function(Porig, D, Padj=NULL, ntop=100, fpr=0.05, adjmethod="bonferroni", cutoff=0.05){
if(is.null(Padj))
Padj = apply(Porig, 2, p.adjust, method="fdr")
ntop = min(nrow(Porig),ntop)
n = ncol(Porig)
I1 = apply(Porig,2,function(x) order(x)[1:ntop])
I1 = unique(as.vector(I1)) # Länge ist abhängig von P!
print(paste("Selecting top",ntop," genes from each list -->",length(I1),"genes total"))
disc = (Padj[I1,] <= fpr)*1
nsig = colSums(Padj[I1,] < fpr)
N = nrow(disc)
patterns = unique(disc)
patterns = patterns[-which(apply(patterns,1,function(r) all(r == 0))),]
if(nrow(patterns) < 1)
stop("No patterns found!")
idx = apply(patterns,1, function(p){
cl = which(apply(disc,1, function(r) all(r == p)))
})
nobserved = sapply(idx, length)
patterns = patterns[nobserved > 0,]
idx = idx[nobserved > 0]
nobserved = nobserved[nobserved > 0]
cat("Testing ", nrow(patterns), " patterns\n")
p.values = sapply(1:nrow(patterns), function(j){
p = patterns[j,]
pexpected = max(0,prod((fpr*p*nsig + (1-fpr)*(1-p)*(N-nsig))/N))
p.value = binom.test(nobserved[j], N, pexpected, alternative="greater")$p.value
cat("pattern ", p, ": (#observed = ", nobserved[j], ", #expected = ", floor(pexpected*N), ", raw p-value = ", p.value,")\n")
p.value
})
cat("\n")
p.values = p.adjust(p.values,method=adjmethod)
if(!any(p.values < cutoff))
stop("No significant patterns found!\n")
patterns = patterns[p.values < cutoff,]
idx = idx[p.values < cutoff]
nobserved = nobserved[p.values < cutoff]
p.values = p.values[p.values < cutoff]
I = I1[unlist(idx)]
cat(length(p.values), " significant patterns -->", length(I), "E-genes in total\n")
D = D[I,]
list(selected=I, dat=D, patterns=patterns, nobserved=nobserved, p.values=p.values)
}
getRelevantEGenes <- function(Phi, D, control, nEgenes=min(10*nrow(Phi), nrow(D))){
# if(type %in% c("CONTmLLRatio", "CONTmLLMAP")){
# sc = score(list(Phi), D, type=type, para=para, hyperpara=hyperpara, Pe=Pe, Pm=Pm, lambda=lambda, delta=delta, verbose=FALSE, graphClass="matrix")
# }
# else{
# L <- sapply(1:nrow(D), function(idx){
# score(list(Phi), D[idx,,drop=FALSE], type=type, para=para, hyperpara=hyperpara, Pe=Pe[idx,,drop=FALSE], Pm=Pm, lambda=lambda, verbose=FALSE, graphClass="matrix")$mLL
# })
L = score(list(Phi), D, control, verbose=FALSE, graphClass="matrix")$LLperGene[[1]]
L = L/sum(L)
if(control$type %in% c("CONTmLLDens", "CONTmLLBayes","CONTmLLMAP","CONTmLLRatio"))
nEgenes = max(10,length(which(L>0)))
sel <- unique(order(L,decreasing=TRUE)[1:nEgenes])
control$Pe = control$Pe[sel,]
sc = score(list(Phi), D[sel,], control, verbose=FALSE, graphClass="matrix")
# }
list(selected=sel, mLL=sc$mLL[[1]], pos=sc$pos[[1]], mappos=sc$mappos[[1]], LLperGene=sc$LLperGene[[1]])
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.