RunDimensionReduction: RunDimensionReduction

Description Usage Arguments Value Examples

Description

This function is based on the Seurat package to perform dimension reduction. The input matirx is the LTMG signaling matrix.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
RunDimensionReduction(object, ...)

.runDimensionReduction(
  object,
  mat.source = c("LTMG", "UMImatrix"),
  reduction = "umap",
  dims = 1:15,
  perplexity = 15,
  seed = 1
)

## S4 method for signature 'IRISFGM'
RunDimensionReduction(
  object,
  mat.source = c("LTMG", "UMImatrix"),
  reduction = "umap",
  dims = 1:15,
  perplexity = 15,
  seed = 1
)

Arguments

object

Input IRIS-FGM object.

...

other arguments passed to methods

mat.source

choose source data for running this function either from LTMG signal matrix or from processed data. Values of this parameter are 'LTMG' and 'UMImatrix'

reduction

select a method for dimension reduction, including umap, tsne, and pca.

dims

select the number of PCs from PCA results to perform the following dimension reduction and cell clustering.

perplexity

Perplexity parameter as optimal number of neighbors.

seed

Set the seed of R‘s random number generator, which is useful for creating simulations or random objects that can be reproduced.

Value

This function will generate pca, tsne, or umap dimension reduction results.

Examples

1
2
3
4
5
6
7
8
9
## Not run: 
obejct <- RunDimensionReduction(object,
   mat.source= 'LTMG',
   reduction = 'umap', 
   dims = 1:15 ,
   perplexity = 15, 
   seed = 1)
   
## End(Not run)

carter-allen/IRISFGM documentation built on Dec. 31, 2020, 9:54 p.m.