#' @title Function to create metage plots for comparison
#'
#' @description
#' QC-metrics of newly analysed ChIP-seq samples can be compared with the
#' reference values of the compendium and enrichment profiles can be
#' plotted against pre-computed profiles of published datasets. The metagene
#' profiles show the problematic samples signal (red line) for the ChIP, for
#' the input and their relative enrichment when compared to the compendium’s
#' mean signal (black line) and its 2 x standard error (blue shadow).
#' Additionally the function plots the desired QC-metric as a red dashed line
#' for the sample plotted against the reference distribution (density plots)
#' of the compendium values stratified by chromatin marks.
#'
#' metagenePlotsForComparison
#' @param target String, chromatin mark or transcription factor to be analysed.
#' Use listAvailableElements() function to check availability.
#' @param data metagene-object of metagene profile by createMetageneProfile()
#' containing input and chip profile
#' @param tag indicating the kind of profile to plot. Can be either:
#' geneBody, TES or TSS.
#' @param savePlotPath if set the plot will be saved under 'savePlotPath'.
#' Default=NULL and plot will be forwarded to stdout.
#' @param plot character, possible values "norm", "chip", "input", "all" (default). To plot metaprofiles for
#' normalized ChIP/input enrichment, or only ChIP reads density, or only input control reads density
#' or all three plots (respectively)
#'
#' @return Creates a pdf figure under 'savePlotPath'
#'
#' @export
#'
#' @examples
#'
#'
#' ## This command is time intensive to run
#' ##
#' ## To run the example code the user must provide two bam files for the ChIP
#' ## and the input and read them with the readBamFile() function. To make it
#' ## easier for the user to run the example code we provide tow bam examples
#' ## (chip and input) in our ChIC.data package that have already been loaded
#' ## with the readBamFile() function.
#'
#' mc=4
#' finalTagShift=98
#'
#' \dontrun{
#'
#' filepath=tempdir()
#' setwd(filepath)
#'
#' data("chipSubset", package = "ChIC.data", envir = environment())
#' chipBam=chipSubset
#' data("inputSubset", package = "ChIC.data", envir = environment())
#' inputBam=inputSubset
#'
#' ## calculate binding characteristics
#'
#' chip_binding.characteristics<-spp::get.binding.characteristics(
#' chipBam, srange=c(0,500), bin=5,accept.all.tags=TRUE)
#' input_binding.characteristics<-spp::get.binding.characteristics(
#' inputBam, srange=c(0,500), bin=5,accept.all.tags=TRUE)
#'
#' ##get chromosome information and order chip and input by it
#' chrl_final=intersect(names(chipBam$tags),names(inputBam$tags))
#' chipBam$tags=chipBam$tags[chrl_final]
#' chipBam$quality=chipBam$quality[chrl_final]
#' inputBam$tags=inputBam$tags[chrl_final]
#' inputBam$quality=inputBam$quality[chrl_final]
#'
#' ##remove sigular positions with extremely high read counts with
#' ##respect to the neighbourhood
#' selectedTags=removeLocalTagAnomalies(chipBam, inputBam,
#' chip_binding.characteristics, input_binding.characteristics)
#'
#' inputBamSelected=selectedTags$input.dataSelected
#' chipBamSelected=selectedTags$chip.dataSelected
#'
#' ##smooth input and chip tags
#' smoothedChip <- tagDensity(chipBamSelected,
#' tag.shift = finalTagShift, mc = mc)
#' smoothedInput <- tagDensity(inputBamSelected,
#' tag.shift = finalTagShift, mc = mc)
#'
#' ##calculate metagene profiles
#' Meta_Result <- createMetageneProfile(
#' smoothed.densityChip = smoothedChip,
#' smoothed.densityInput = smoothedInput,
#' tag.shift = finalTagShift, mc = mc)
#'
#' ##compare metagene features of the geneBody with the compendium
#' metagenePlotsForComparison(data = Meta_Result$geneBody,
#' target = "H3K4me3", tag = "geneBody")
#'}
metagenePlotsForComparison <- function(data, target, tag,
savePlotPath = NULL, plot="all")
{
# pseudocount, required to avoid log2 of 0
psc <- 1
########## check if input format is ok
if (!(is.list(data) & (length(data) == 3L)))
stop("Invalid format for data")
# stopifnot(target %in% Hlist)
if ((!(target %in% f_metaGeneDefinition("Hlist"))) &
(!(target %in% f_metaGeneDefinition("TFlist"))))
stop("Chromatin mark or TF not valid. Check manual for valid options.")
if (!(tag %in% c("geneBody", "TES", "TSS")))
stop("tag not valid! Please use: geneBody, TES or TSS")
if (!(plot %in% c("all","norm","chip","input")) ) {
stop("Wrong plot parameter value in metagenePlotsForComparison().
Possible values are \"all\",\"norm\",\"chip\",\"input\"")
}
##########
message("Calculating metagene profiles...")
iframe <- log2(do.call(rbind, data[[tag]]$input) + psc)
cframe <- log2(do.call(rbind, data[[tag]]$chip) + psc)
norm <- do.call(rbind, data[[tag]]$norm)
# load average dataframe normalized
n_mean <- f_loadDataCompendium(endung = "norm",
target = target, tag = tag)
if (!is.numeric(n_mean$x)) { n_mean$x<-as.numeric(as.character(n_mean$x)) } # fix a problem with characters in the positions that are derived from rownames
normMin <- min(n_mean$mean - n_mean$sderr)
normMax <- max(n_mean$mean + n_mean$sderr)
## load average dataframe chip
c_mean <- f_loadDataCompendium(endung = "chip",
target = target, tag = tag)
if (!is.numeric(c_mean$x)) { c_mean$x<-as.numeric(as.character(c_mean$x)) } # fix a problem with characters in the positions that are derived from rownames
## load average dataframe input
i_mean <- f_loadDataCompendium(endung = "input",
target = target, tag = tag)
if (!is.numeric(i_mean$x)) { i_mean$x<-as.numeric(as.character(i_mean$x)) } # fix a problem with characters in the positions that are derived from rownames
## get the range for x-y axis fro the final plot
absoluteMin <- min(c(min(c_mean$mean - c_mean$sderr), min(i_mean$mean - i_mean$sderr)))
absoluteMax <- max(c(max(c_mean$mean + c_mean$sderr), max(i_mean$mean + i_mean$sderr)))
#nframe <- colMeans(t(t(cframe) - t(iframe)), na.rm = TRUE)
##average columns
nframeB <- colMeans(norm, na.rm = TRUE)
iframeB <- colMeans(iframe, na.rm = TRUE)
cframeB <- colMeans(cframe, na.rm = TRUE)
iframeC <- f_prepareData(i_mean, iframeB)
cframeC <- f_prepareData(c_mean, cframeB)
nframeC <- f_prepareData(n_mean, nframeB)
for (column in c("x","mean")) {
if (!is.numeric(iframeC[[column]])) { iframeC[[column]]<-as.numeric(as.character(iframeC[[column]]))}
if (!is.numeric(cframeC[[column]])) { cframeC[[column]]<-as.numeric(as.character(cframeC[[column]]))}
if (!is.numeric(nframeC[[column]])) { nframeC[[column]]<-as.numeric(as.character(nframeC[[column]]))}
}
## get max and min for same y-axis values for chip and input
newMin <- min(cframeC$mean, absoluteMin, iframeC$mean)
newMax <- max(cframeC$mean, absoluteMax, iframeC$mean)
## get max and min for y-axis values for norm
normMin <- min(nframeC$mean, normMin)
normMax <- max(nframeC$mean, normMax)
# create comparison plots
message ("Creating comparison plots...")
if (!is.null(savePlotPath)) {
filename <- file.path(savePlotPath, paste("metageneComparisons", target, plot,"pdf", sep="."))
pdf(file = filename, width = 10, height = 7)
}
if (plot %in% c("all", "chip")) {
f_plotProfiles(meanFrame=c_mean, currentFrame=cframeC, endung=tag,
absoluteMinMax=c(newMin - 0.001, newMax + 0.001),
maintitel = paste(target, tag, "Chip", sep = "_"),
ylab = "mean of log2 read density",
savePlotPath = savePlotPath)
}
if (plot %in% c("all", "input")) {
f_plotProfiles(meanFrame=i_mean, currentFrame=iframeC, endung=tag,
absoluteMinMax=c(newMin - 0.001, newMax + 0.001),
maintitel = paste(target, tag, "Input", sep = "_"),
ylab = "mean of log2 read density",
savePlotPath = savePlotPath)
}
if (plot %in% c("all", "norm")) {
f_plotProfiles(meanFrame=n_mean, currentFrame=nframeC, endung=tag,
absoluteMinMax=c(normMin - 0.001, normMax + 0.001),
maintitel = paste(target, tag, "norm", sep = "_"),
ylab = "mean log2 enrichment (signal/input)",
savePlotPath = savePlotPath, currentCol="orange")
}
if ( !is.null(savePlotPath)) {
dev.off()
message("Plots have been saved under ", savePlotPath)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.