View source: R/discovery_prediction.R
predict_exposure | R Documentation |
Exposures for samples will be predicted using an existing set
of signatures stored in a result_model
object.
Algorithms available for prediction include a modify version of "lda"
,
and "decompTumor2Sig"
.
predict_exposure(
musica,
modality,
signature_res,
algorithm = c("lda", "decompTumor2Sig"),
result_name = "result",
model_id = NULL,
signatures_to_use = seq_len(ncol(signatures(signature_res))),
verbose = FALSE,
make_copy = FALSE,
table_name = NULL
)
musica |
A |
modality |
Modality for posterior prediction. Must match the table type used to generate the prediction signatures |
signature_res |
Signatures used to predict exposures for the samples
|
algorithm |
Algorithm to use for prediction of exposures. One of
|
result_name |
Name for result_list entry to save the results to. Default
|
model_id |
Identifier for the result. If |
signatures_to_use |
Which signatures in the |
verbose |
If |
make_copy |
If |
table_name |
Use modality instead |
Returns nothing or a new musica
object,
depending on the make_copy
parameter.
data(musica)
data(cosmic_v2_sigs)
g <- select_genome("19")
build_standard_table(musica, g, "SBS96", overwrite = TRUE)
result <- predict_exposure(
musica = musica, modality = "SBS96",
signature_res = cosmic_v2_sigs, algorithm = "lda"
)
# Predict using LDA-like algorithm with seed set to 1
set.seed(1)
predict_exposure(
musica = musica, modality = "SBS96",
signature_res = cosmic_v2_sigs, algorithm = "lda"
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.