R/population-size-estimate.R

Defines functions blood_lineages_default HSC_population_size_estimate

Documented in blood_lineages_default HSC_population_size_estimate

#------------------------------------------------------------------------------#
# Population size estimate
#------------------------------------------------------------------------------#

#' Hematopoietic stem cells population size estimate.
#'
#' @description
#' `r lifecycle::badge("stable")`
#' Hematopoietic stem cells population size estimate with capture-recapture
#' models.
#'
#' @details
#' # Input formats
#' Both `x` and `metadata` should be supplied to the function in aggregated
#' format (ideally through the use of \code{\link{aggregate_metadata}}
#' and \code{\link{aggregate_values_by_key}}).
#' Note that the `aggregation_key`, aka the vector of column names used for
#' aggregation, must contain at least the columns associated with the tags
#' `subject`, `cell_marker`, `tissue` and a time point column
#' (the user can specify the name of the
#' column in the argument `timepoint_column`).
#'
#' # Specifying more than one group
#' Groups for the estimates are computed as a pair of cell type and tissue.
#' If the user wishes to compute estimates for more than one combination
#' of cell type and tissue, it is possible to specify them as character
#' vectors to the fields `cell_type` and `tissue_type` respectively,
#' noting that:
#'
#' * Vectors must have the same length or one of the 2 has to be of length 1
#' * It is a responsibility of the user to check whether the combination
#' exists in the dataset provided.
#'
#' Example:
#' ```{r eval=FALSE}
#' estimate <- HSC_population_size_estimate(
#'     x = aggreg,
#'     metadata = aggreg_meta,
#'     cell_type = c("MYELOID", "T", "B"),
#'     tissue_type = "PB"
#' )
#'
#' # Evaluated groups will be:
#' # - MYELOID PB
#' # - T PB
#' # - B PB
#' ```
#' Note that estimates are computed individually for each group.
#'
#' # On time points
#' If `stable_timepoints` is a vector with length > 1, the function will look
#' for the first available stable time point and slice the data from that
#' time point onward. If `NULL` is supplied instead, it means there are no
#' stable time points available. Note that 0 time points are ALWAYS discarded.
#' Also, to be included in the analysis, a group must have at least 2
#' distinct non-zero time points.
#' NOTE: the vector passed has to contain all individual time points, not
#' just the minimum and maximum
#'
#' # Setting a threshold for fragment estimate
#' If fragment estimate is present in the input matrix, the filtering logic
#' changes slightly: rows in the original matrix are kept if the sequence
#' count value is greater or equal than the `seqCount_threshold` AND
#' the fragment estimate value is greater or equal to the
#' `fragmentEstimate_threshold` IF PRESENT (non-zero value).
#' This means that for rows that miss fragment estimate, the filtering logic
#' will be applied only on sequence count. If the user wishes not to use
#' the combined filtering with fragment estimate, simply set
#' `fragmentEstimate_threshold = 0`.
#'
#' @param x An aggregated integration matrix. See details.
#' @param metadata An aggregated association file. See details.
#' @param stable_timepoints A numeric vector or NULL if there are no
#' stable time points. NOTE: the vector is NOT intended as a sequence min-max,
#' every stable time point has to be specified individually
#' @param aggregation_key A character vector indicating the key used for
#' aggregating x and metadata. Note that x and metadata should always be
#' aggregated with the same key.
#' @param blood_lineages A data frame containing information on the blood
#' lineages. Users can supply their own, provided the columns `CellMarker` and
#' `CellType` are present.
#' @param timepoint_column What is the name of the time point column to use?
#' Note that this column must be present in the key.
#' @param seqCount_column What is the name of the column in x containing the
#' values of sequence count quantification?
#' @param fragmentEstimate_column What is the name of the column in x
#' containing the values of fragment estimate quantification? If fragment
#' estimate is not present in the matrix, param should be set to `NULL`.
#' @param seqCount_threshold A single numeric value. After re-aggregating `x`,
#' rows with a value greater or equal will be kept, the others will be
#' discarded.
#' @param fragmentEstimate_threshold A single numeric value. Threshold
#' value for fragment estimate, see details.
#' @param nIS_threshold A single numeric value. If a group (row) in the
#' metadata data frame has a count of distinct integration sites strictly
#' greater than this number it will be kept, otherwise discarded.
#' @param cell_type The cell types to include in the models. Note that
#' the matching is case-insensitive.
#' @param tissue_type The tissue types to include in the models. Note that
#' the matching is case-insensitive.
#' @param max_workers Maximum parallel workers allowed
#'
#' @section Required tags:
#' The function will explicitly check for the presence of these tags:
#'
#' ```{r echo=FALSE, results="asis"}
#' all_tags <- available_tags()
#' needed <- all_tags |>
#'    dplyr::mutate(
#'    in_fun = purrr::map_lgl(.data$needed_in,
#'    ~ "HSC_population_size_estimate" %in% .x)
#'    ) |>
#'    dplyr::filter(in_fun == TRUE) |>
#'    dplyr::distinct(.data$tag) |>
#'    dplyr::pull("tag")
#'  cat(paste0("* ", needed, collapse="\n"))
#' ```
#'
#' @return A data frame with the results of the estimates
#' @family Analysis functions
#'
#' @importFrom rlang abort inform
#' @importFrom stringr str_to_upper str_detect
#' @importFrom purrr reduce
#'
#' @export
#'
#' @examples
#' data("integration_matrices", package = "ISAnalytics")
#' data("association_file", package = "ISAnalytics")
#' aggreg <- aggregate_values_by_key(
#'     x = integration_matrices,
#'     association_file = association_file,
#'     value_cols = c("seqCount", "fragmentEstimate")
#' )
#' aggreg_meta <- aggregate_metadata(association_file = association_file)
#' estimate <- HSC_population_size_estimate(
#'     x = aggreg,
#'     metadata = aggreg_meta,
#'     fragmentEstimate_column = NULL,
#'     stable_timepoints = c(90, 180, 360),
#'     cell_type = "Other"
#' )
HSC_population_size_estimate <- function(
        x,
        metadata,
        stable_timepoints = NULL,
        aggregation_key = c("SubjectID", "CellMarker", "Tissue", "TimePoint"),
        blood_lineages = blood_lineages_default(),
        timepoint_column = "TimePoint",
        seqCount_column = "seqCount_sum",
        fragmentEstimate_column = "fragmentEstimate_sum",
        seqCount_threshold = 3,
        fragmentEstimate_threshold = 3,
        nIS_threshold = 5,
        cell_type = "MYELOID",
        tissue_type = "PB",
        max_workers = 4) {
    # Param check
    if (!rlang::is_installed("Rcapture")) {
        rlang::abort(.missing_pkg_error("Rcapture"))
    }
    ## Basic checks on types
    stopifnot(is.data.frame(x))
    stopifnot(is.data.frame(metadata))
    stopifnot(is.null(stable_timepoints) || is.numeric(stable_timepoints))
    stopifnot(is.character(aggregation_key))
    stopifnot(is.data.frame(blood_lineages))
    stopifnot(is.character(timepoint_column))
    timepoint_column <- timepoint_column[1]
    stopifnot(is.character(seqCount_column))
    seqCount_column <- seqCount_column[1]
    stopifnot(is.null(fragmentEstimate_column) ||
        is.character(fragmentEstimate_column))
    fragmentEstimate_column <- fragmentEstimate_column[1]
    stopifnot(is.numeric(seqCount_threshold))
    seqCount_threshold <- seqCount_threshold[1]
    stopifnot(is.numeric(fragmentEstimate_threshold))
    fragmentEstimate_threshold <- fragmentEstimate_threshold[1]
    stopifnot(is.numeric(nIS_threshold))
    nIS_threshold <- nIS_threshold[1]
    stopifnot(is.character(cell_type))
    stopifnot(is.character(tissue_type))
    stopifnot(is.numeric(max_workers))
    ## Convert cell_type and tissue_type to uppercase (for case insensitivity)
    cell_type <- stringr::str_to_upper(cell_type)
    tissue_type <- stringr::str_to_upper(tissue_type)
    groups_to_proc <- .match_celltypes_tissues(cell_type, tissue_type)
    ## Assumptions on aggregation key
    required_tags <- list(
        subject = "char",
        cell_marker = "char",
        tissue = "char"
    )
    tag_cols <- .check_required_cols(
        required_tags,
        vars_df = association_file_columns(TRUE),
        duplicate_politic = "error"
    )
    minimum_key <- c(tag_cols$names, timepoint_column)
    if (!all(minimum_key %in% aggregation_key)) {
        rlang::abort(.not_min_key_err(
            minimum_key[!minimum_key %in% aggregation_key]
        ))
    }
    ## Aggregation key must be found in both data and meta
    if (!all(aggregation_key %in% colnames(x))) {
        rlang::abort(.agg_key_not_found_err("x", aggregation_key))
    }

    if (!all(aggregation_key %in% colnames(metadata))) {
        rlang::abort(.agg_key_not_found_err("metadata", aggregation_key))
    }
    ## Check actual aggregation
    distinct_agg_groups <- metadata |>
        dplyr::distinct(
            dplyr::across(
                dplyr::all_of(aggregation_key)
            )
        )
    meta_is_aggregated <- if (nrow(metadata) == nrow(distinct_agg_groups)) {
        TRUE
    } else {
        FALSE
    }
    if (!meta_is_aggregated) {
        rlang::abort(.meta_not_agg_err())
    }
    ## Check seqCount col in x
    if (!seqCount_column %in% colnames(x)) {
        sc_err <- c("Sequence count column not found in x")
        rlang::abort(sc_err)
    }
    ## Check fragmentEstimate col in x
    if (!is.null(fragmentEstimate_column) &&
        !fragmentEstimate_column %in% colnames(x)) {
        fe_err <- c("Fragment estimate column not found in x",
            i = paste(
                "To ignore fragment estimate, set",
                "`fragmentEstimate_column = NULL`"
            )
        )
        rlang::abort(fe_err)
    }
    ## Reorder stable timepoints
    if (is.null(stable_timepoints)) {
        stable_timepoints <- numeric(0)
    }
    stable_timepoints <- sort(stable_timepoints)
    ## Check presence of NumIS column
    if (!"NumIS" %in% colnames(metadata)) {
        if (getOption("ISAnalytics.verbose", TRUE) == TRUE) {
            is_msg <- c("Calculating number of IS for each group...")
            rlang::inform(is_msg)
        }
        numIs <- x |>
            dplyr::left_join(metadata, by = aggregation_key) |>
            dplyr::group_by(dplyr::across(dplyr::all_of(aggregation_key))) |>
            dplyr::distinct(dplyr::across(
                dplyr::all_of(mandatory_IS_vars())
            )) |>
            dplyr::count(name = "NumIS")
        metadata <- metadata |>
            dplyr::left_join(numIs, by = aggregation_key) |>
            dplyr::distinct()
    }
    ## Check blood lineages
    cm_col <- tag_cols |>
        dplyr::filter(.data$tag == "cell_marker") |>
        dplyr::pull(.data$names)
    tissue_col <- tag_cols |>
        dplyr::filter(.data$tag == "tissue") |>
        dplyr::pull(.data$names)
    subj_col <- tag_cols |>
        dplyr::filter(.data$tag == "subject") |>
        dplyr::pull(.data$names)
    if (!all(c(cm_col, "CellType") %in% colnames(blood_lineages))) {
        err <- c(paste0(
            "The blood lineages table must contain at least",
            "the columns `", cm_col, "` and `CellType`"
        ))
        rlang::abort(err)
    }
    # --- METADATA
    ### Join meta with blood lineages
    metadata <- metadata |>
        dplyr::filter(.data$NumIS > nIS_threshold) |>
        dplyr::left_join(blood_lineages, by = cm_col)
    if (nrow(metadata) == 0) {
        empty_meta_warn <- c("Empty metadata after filtering",
            i = paste(
                "Metadata does not contain samples that",
                "match the filter",
                "`numIS >", nIS_threshold, "`. Nothing to do."
            )
        )
        rlang::inform(empty_meta_warn)
        return(NULL)
    }
    # --- SPLIT THE INPUT AGGREGATED MATRIX BY SubjectID
    x_subj_split <- x |>
        dplyr::group_by(dplyr::across(dplyr::all_of(subj_col))) |>
        dplyr::group_split()
    #### Process in parallel
    annotation_cols <- if (.is_annotated(x)) {
        annotation_IS_vars()
    } else {
        NULL
    }
    population_size <- .execute_map_job(
        data_list = x_subj_split,
        fun_to_apply = .re_agg_and_estimate,
        fun_args = list(
            metadata = metadata,
            fragmentEstimate_column = fragmentEstimate_column,
            seqCount_column = seqCount_column,
            tissue_col = tissue_col,
            timepoint_column = timepoint_column,
            aggregation_key = aggregation_key,
            seqCount_threshold = seqCount_threshold,
            fragmentEstimate_threshold = fragmentEstimate_threshold,
            groups_to_proc = groups_to_proc,
            annotation_cols = annotation_cols,
            subj_col = subj_col,
            stable_timepoints = stable_timepoints
        ),
        stop_on_error = FALSE,
        max_workers = max_workers
    )
    errs <- population_size$err |> purrr::list_flatten()
    populations_dfs <- purrr::map(population_size$res, ~ .x$est)
    populations_logs <- purrr::map(population_size$res, ~ .x$log)
    if (!all(purrr::map_lgl(errs, is.null))) {
        err_msgs <- purrr::map_chr(errs, ~ .x$message)
        err_notify <- c("Warning - errors were raised during computation",
            i = glue::glue(" - {err_msgs}")
        )
        rlang::inform(err_notify)
    }
    populations_dfs <- purrr::keep(populations_dfs, ~ !is.null(.x)) |>
        purrr::list_rbind()
    if (!is.null(populations_dfs) & !purrr::is_empty(populations_dfs)) {
        populations_dfs <- populations_dfs |>
            dplyr::mutate(PopSize = round(.data$abundance - .data$stderr))
    } else {
        populations_dfs <- NULL
    }

    return(list(est = populations_dfs, log = populations_logs))
}


#---- Default blood lineages --------------------------------------------------#
#' Default blood lineages info
#'
#' A default table with info relative to different blood lineages associated
#' with cell markers that can be supplied as a parameter to
#'  \code{\link{HSC_population_size_estimate}}
#'
#' @return A data frame
#' @importFrom tibble tribble
#' @export
#'
#' @examples
#' blood_lineages_default()
blood_lineages_default <- function() {
    tibble::tribble(
        ~CellMarker, ~Keywords, ~CellType, ~HematoLineage, ~SuperGroup,
        ~LineageByPurity,
        "CD13", "MYELO", "Myeloid", "Myeloid", "CD13", "Myeloid",
        "CD14", "MYELO", "Myeloid", "Myeloid", "CD14", "Myeloid",
        "CD15", "MYELO", "Myeloid", "Myeloid", "CD15", "Myeloid",
        "CD19", "B", "B", "Lymphoid", "CD19", "Lymphoid",
        "CD3", "T", "T", "Lymphoid", "CD3", "Lymphoid",
        "CD34", "CD34", "CD34", "CD34", "CD34", "CD34",
        "CD34Molmed", "CD34", "Other", "Other", "Other", "Other",
        "CD34NEG", "CD34", "Other", "Other", "Other", "Other",
        "CD36", "TE", "Erythroid", "Erythroid", "CD36", "Erythroid",
        "CD4", "T", "T", "Lymphoid", "CD3", "Lymphoid",
        "CD56", "NK", "NK", "Lymphoid", "CD56", "Other",
        "CD61", "MEGACARIO", "Megacario", "Megacario", "CD61", "Megacario",
        "CD8", "T", "T", "Lymphoid", "CD3", "Lymphoid",
        "CellLine", "CellLine", "Other", "Other", "Other", "Other",
        "CFC", "CFC", "Other", "Other", "Other", "Other",
        "CFC-BFUE", "CFC", "Other", "Other", "Other", "Other",
        "CFC-BULK", "CFC", "Other", "Other", "Other", "Other",
        "CFC-CFUGM", "CFC", "Other", "Other", "Other", "Other",
        "CFCPOOL", "CFC", "Other", "Other", "Other", "Other",
        "CMP", "CD34", "CD34", "CD34", "CD34", "CD34",
        "GLY", "TE", "Erythroid", "Erythroid", "GLY", "Erythroid",
        "GLYA", "TE", "Erythroid", "Erythroid", "GLY", "Erythroid",
        "GMP", "CD34", "CD34", "CD34", "CD34", "CD34",
        "Granulo", "Granulo", "Granulo", "Other", "Other", "Other",
        "H2O", "H2O", "Other", "Other", "Other", "Other",
        "HSC", "CD34", "CD34", "CD34", "CD34", "CD34",
        "LCE", "LCE", "Other", "Other", "Other", "Other",
        "MEP", "CD34", "CD34", "CD34", "CD34", "CD34",
        "MLP", "CD34", "CD34", "CD34", "CD34", "CD34",
        "MNC", "MNC", "Other", "Other", "Other", "Other",
        "Molmed-CD34", "CD34", "Other", "Other", "Other", "Other",
        "MPP", "CD34", "CD34", "CD34", "CD34", "CD34",
        "NEGCD34", "CD34", "Other", "Other", "Other", "Other",
        "NONE", "NONE", "Other", "Other", "Other", "Other",
        "PBMC", "Whole", "Other", "Other", "Other", "Other",
        "PHA", "CellLine", "Other", "Other", "Other", "Other",
        "Plasma", "PLASMA", "Plasma", "Plasma", "Plasma", "Plasma",
        "PreB-NK", "NK", "NK", "Lymphoid", "CD56", "Lymphoid",
        "PreBNK", "NK", "NK", "Lymphoid", "CD56", "Lymphoid",
        "UTR", "UTR", "Other", "Other", "Other", "Other",
        "WBM", "BM", "Other", "Other", "Other", "Other",
        "Whole", "Whole", "Other", "Other", "Other", "Other",
        "WPB", "PB", "Other", "Other", "Other", "Other",
        "CFCBFUE", "CFC", "Other", "Other", "Other", "Other",
        "CFCBULK", "CFC", "Other", "Other", "Other", "Other",
        "CFCCFUGM", "CFC", "Other", "Other", "Other", "Other",
        "Ctlin", "Ctlin", "Other", "Other", "Other", "Other"
    )
}
calabrialab/ISAnalytics documentation built on Dec. 10, 2024, 10:50 p.m.