compareAn2graphfile | R Documentation |
This function builds a correlation graph from the outputs
of function compareAn
.
compareAn2graphfile(listPairCor, useMax = TRUE,
cutoff = NULL, useVal = c("cor", "pval"), file = NULL)
listPairCor |
The output of the function
|
useMax |
If TRUE, the graph is restricted to edges that correspond to maximum score, see details |
cutoff |
Cutoff used to select pairs that will be included in the graph. |
useVal |
The value on which is based the graph,
either |
file |
File name. |
When correlations are considered (useVal
="cor"),
absolute values are used since the components have no
direction.
If useMax
is TRUE
each component is linked
to the most correlated component of each different
IcaSet
.
If cutoff
is specified, only correlations
exceeding this value are taken into account during the
graph construction. For example, if cutoff
is 1,
only relationships between components that correspond to
a correlation value larger than 1 will be included.
When useVal="pval"
and useMax=TRUE
, the
minimum value is taken instead of the maximum.
A data.frame with the graph description, has two columns
n1
and n2
filled with node IDs, each row
denotes that there is an edge from n1
to
n2
. Additional columns quantify the strength of
association: correlation (cor
), p-value
(pval
), (1-abs(cor)
) (distcor
),
log10-pvalue (logpval
).
Anne Biton
compareAn
, cor2An
dat1 <- data.frame(matrix(rnorm(10000),ncol=10,nrow=1000))
rownames(dat1) <- paste("g", 1:1000, sep="")
colnames(dat1) <- paste("s", 1:10, sep="")
dat2 <- data.frame(matrix(rnorm(10000),ncol=10,nrow=1000))
rownames(dat2) <- paste("g", 1:1000, sep="")
colnames(dat2) <- paste("s", 1:10, sep="")
## run ICA
resJade1 <- runICA(X=dat1, nbComp=3, method = "JADE")
resJade2 <- runICA(X=dat2, nbComp=3, method = "JADE")
## build params
params <- buildMineICAParams(resPath="toy/")
## build IcaSet object
icaSettoy1 <- buildIcaSet(params=params, A=data.frame(resJade1$A), S=data.frame(resJade1$S),
dat=dat1, alreadyAnnot=TRUE)$icaSet
icaSettoy2 <- buildIcaSet(params=params, A=data.frame(resJade2$A), S=data.frame(resJade2$S),
dat=dat2, alreadyAnnot=TRUE)$icaSet
resCompareAn <- compareAn(icaSets=list(icaSettoy1,icaSettoy2), labAn=c("toy1","toy2"),
type.corr="pearson", level="genes", cutoff_zval=0)
## Build a graph where edges correspond to maximal correlation value (useVal="cor"),
compareAn2graphfile(listPairCor=resCompareAn, useMax=TRUE, useVal="cor", file="myGraph.txt")
## Not run:
#### Comparison of 2 ICA decompositions obtained on 2 different gene expression datasets.
## load the two datasets
library(breastCancerMAINZ)
library(breastCancerVDX)
data(mainz)
data(vdx)
## Define a function used to build two examples of IcaSet objects
treat <- function(es, annot="hgu133a.db") {
es <- selectFeatures_IQR(es,10000)
exprs(es) <- t(apply(exprs(es),1,scale,scale=FALSE))
colnames(exprs(es)) <- sampleNames(es)
resJade <- runICA(X=exprs(es), nbComp=10, method = "JADE", maxit=10000)
resBuild <- buildIcaSet(params=buildMineICAParams(), A=data.frame(resJade$A), S=data.frame(resJade$S),
dat=exprs(es), pData=pData(es), refSamples=character(0),
annotation=annot, typeID= typeIDmainz,
chipManu = "affymetrix", mart=mart)
icaSet <- resBuild$icaSet
}
## Build the two IcaSet objects
icaSetMainz <- treat(mainz)
icaSetVdx <- treat(vdx)
## Compute correlation between every pair of IcaSet objects.
resCompareAn <- compareAn(icaSets=list(icaSetMainz,icaSetVdx),
labAn=c("Mainz","Vdx"), type.corr="pearson", level="genes", cutoff_zval=0)
## Same thing but adding a selection of genes on which the correlation between two components is computed:
# when considering pairs of components, only projections whose scaled values are not located within
# the circle of radius 1 are used to compute the correlation (cutoff_zval=1).
resCompareAn <- compareAn(icaSets=list(icaSetMainz,icaSetVdx),
labAn=c("Mainz","Vdx"), type.corr="pearson", cutoff_zval=1, level="genes")
## Build a graph where edges correspond to maximal correlation value (useVal="cor"),
## i.e, component A of analysis i is linked to component B of analysis j,
## only if component B is the most correlated component to A amongst all component of analysis j.
compareAn2graphfile(listPairCor=resCompareAn, useMax=TRUE, useVal="cor", file="myGraph.txt")
## Restrict the graph to correlation values exceeding 0.4
compareAn2graphfile(listPairCor=resCompareAn, useMax=FALSE, cutoff=0.4, useVal="cor", file="myGraph.txt")
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.